On monoids of monotone injective partial selfmaps of Ln ×lex Z with co-finite domains and images
We study the semigroup IO∞(Zⁿlex) of monotone injective partial selfmaps of the set of Ln × lex Z having co-finite domain and image, where Ln ×lex Z is the lexicographic product of n-elements chain and the set of integers with the usual order. We show that IO∞(Zⁿlex) is bisimple and establish its pr...
Gespeichert in:
| Datum: | 2014 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2014
|
| Schriftenreihe: | Algebra and Discrete Mathematics |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/153337 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On monoids of monotone injective partial selfmaps of Ln ×lex Z with co-finite domains and images / O. Gutik, I. Pozdnyakova // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 256–279. — Бібліогр.: 28 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | We study the semigroup IO∞(Zⁿlex) of monotone injective partial selfmaps of the set of Ln × lex Z having co-finite domain and image, where Ln ×lex Z is the lexicographic product of n-elements chain and the set of integers with the usual order. We show that IO∞(Zⁿlex) is bisimple and establish its projective congruences. We prove that IO∞(Zⁿlex) is finitely generated, and for n = 1 every automorphism of IO∞(Zⁿlex) is inner and show that in the case n ⩾ 2 the semigroup IO∞(Zⁿlex) has non-inner automorphisms. Also we show that every Baire topology τ on IO∞(Znlex) such that (IO∞(Znlex),τ) is a Hausdorff semitopological semigroup is discrete, construct a non-discrete Hausdorff semigroup inverse topology on IO∞(Zⁿlex), and prove that the discrete semigroup IO∞(Zⁿlex) cannot be embedded into some classes of compact-like topological semigroups and that its remainder under the closure in a topological semigroup S is an ideal in S. |
|---|