Algebra in superextensions of groups, II: cancelativity and centers
Given a countable group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x∈X:x−1C∈B}∈A} that extends the group operation of X. We show that the subse...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2008 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2008
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/153356 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Algebra in superextensions of groups, II: cancelativity and centers / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 1–14. — Бібліогр.: 10 назв. — англ. |