Algebra in superextensions of groups, II: cancelativity and centers
Given a countable group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x∈X:x−1C∈B}∈A} that extends the group operation of X. We show that the subse...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2008 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2008
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/153356 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Algebra in superextensions of groups, II: cancelativity and centers / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 1–14. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Given a countable group X we study the algebraic structure of its
superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation
A∘B={C⊂X:{x∈X:x−1C∈B}∈A}
that extends the group operation of X. We show that the subsemigroup λ∘(X) of free maximal linked systems contains an open dense subset of right cancelable elements. Also we prove that the topological center of λ(X) coincides with the subsemigroup λ∙(X) of all maximal linked systems with finite support. This result is applied to show that the algebraic center of λ(X) coincides with the algebraic center of X provided X is countably infinite. On the other hand, for finite groups X of order 3≤|X|≤5 the algebraic center of λ(X) is strictly larger than the algebraic center of X.
|
|---|---|
| ISSN: | 1726-3255 |