Algebra in superextensions of groups, II: cancelativity and centers

Given a countable group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x∈X:x−1C∈B}∈A} that extends the group operation of X. We show that the subse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2008
Hauptverfasser: Banakh, T., Gavrylkiv, V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/153356
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Algebra in superextensions of groups, II: cancelativity and centers / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 1–14. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-153356
record_format dspace
spelling Banakh, T.
Gavrylkiv, V.
2019-06-14T03:34:04Z
2019-06-14T03:34:04Z
2008
Algebra in superextensions of groups, II: cancelativity and centers / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 1–14. — Бібліогр.: 10 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 20M99, 54B20.
https://nasplib.isofts.kiev.ua/handle/123456789/153356
Given a countable group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x∈X:x−1C∈B}∈A} that extends the group operation of X. We show that the subsemigroup λ∘(X) of free maximal linked systems contains an open dense subset of right cancelable elements. Also we prove that the topological center of λ(X) coincides with the subsemigroup λ∙(X) of all maximal linked systems with finite support. This result is applied to show that the algebraic center of λ(X) coincides with the algebraic center of X provided X is countably infinite. On the other hand, for finite groups X of order 3≤|X|≤5 the algebraic center of λ(X) is strictly larger than the algebraic center of X.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Algebra in superextensions of groups, II: cancelativity and centers
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Algebra in superextensions of groups, II: cancelativity and centers
spellingShingle Algebra in superextensions of groups, II: cancelativity and centers
Banakh, T.
Gavrylkiv, V.
title_short Algebra in superextensions of groups, II: cancelativity and centers
title_full Algebra in superextensions of groups, II: cancelativity and centers
title_fullStr Algebra in superextensions of groups, II: cancelativity and centers
title_full_unstemmed Algebra in superextensions of groups, II: cancelativity and centers
title_sort algebra in superextensions of groups, ii: cancelativity and centers
author Banakh, T.
Gavrylkiv, V.
author_facet Banakh, T.
Gavrylkiv, V.
publishDate 2008
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Given a countable group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x∈X:x−1C∈B}∈A} that extends the group operation of X. We show that the subsemigroup λ∘(X) of free maximal linked systems contains an open dense subset of right cancelable elements. Also we prove that the topological center of λ(X) coincides with the subsemigroup λ∙(X) of all maximal linked systems with finite support. This result is applied to show that the algebraic center of λ(X) coincides with the algebraic center of X provided X is countably infinite. On the other hand, for finite groups X of order 3≤|X|≤5 the algebraic center of λ(X) is strictly larger than the algebraic center of X.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/153356
citation_txt Algebra in superextensions of groups, II: cancelativity and centers / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 1–14. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT banakht algebrainsuperextensionsofgroupsiicancelativityandcenters
AT gavrylkivv algebrainsuperextensionsofgroupsiicancelativityandcenters
first_indexed 2025-12-07T19:57:24Z
last_indexed 2025-12-07T19:57:24Z
_version_ 1850880761167609856