Random walks on finite groups converging after finite number of steps

Let P be a probability on a finite group G, P(n)=P∗…∗P (n times) be an n-fold convolution of P. If n→∞, then under mild conditions P(n) converges to the uniform probability U(g)=1|G| (g∈G). We study the case when the sequence P(n) reaches its limit U after finite number of steps: P(k)=P(k+1)=⋯=U for...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2008
Main Authors: Vyshnevetskiy, A.L., Zhmud, E.M.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2008
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/153370
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Random walks on finite groups converging after finite number of steps / A.L. Vyshnevetskiy, E.M. Zhmud // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 123–129. — Бібліогр.: 3 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine