Ramseyan variations on symmetric subsequences
A theorem of Dekking in the combinatorics of words implies that there exists an injective order-preserving transformation f : {0, 1, . . . , n} → {0, 1, . . . , 2n} with the restriction f(i + 1) ≤ f(i) + 2 such that for every 5-term arithmetic progression P its image f(P) is not an arithmetic prog...
Saved in:
| Date: | 2003 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2003
|
| Series: | Algebra and Discrete Mathematics |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/154678 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Ramseyan variations on symmetric subsequences / O. Verbitsky // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 111–124. — Бібліогр.: 16 назв. — англ. |