Generalization of primal superideals
Let R be a commutative super-ring with unity 16= 0. A proper super ideal of R is a super ideaI of R such that I 6=R.Letφ:I(R)→I(R)∪ {∅}be any function, where I(R) denotes the set of all proper super ideals of R. A homogeneous element a∈R is φ-prime to Iifra∈I−φ(I) whereris a homogeneous element in R...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2016 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2016
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/155239 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Generalization of primal superideals / A. Jaber // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 202-213. — Бібліогр.: 13 назв. — англ. |