Generalization of primal superideals

Let R be a commutative super-ring with unity 16= 0. A proper super ideal of R is a super ideaI of R such that I 6=R.Letφ:I(R)→I(R)∪ {∅}be any function, where I(R) denotes the set of all proper super ideals of R. A homogeneous element a∈R is φ-prime to Iifra∈I−φ(I) whereris a homogeneous element in R...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2016
Автор: Jaber, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2016
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/155239
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generalization of primal superideals / A. Jaber // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 202-213. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155239
record_format dspace
spelling Jaber, A.
2019-06-16T14:32:29Z
2019-06-16T14:32:29Z
2016
Generalization of primal superideals / A. Jaber // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 202-213. — Бібліогр.: 13 назв. — англ.
1726-3255
2010 MSC:13A02, 16D25, 16W50.
https://nasplib.isofts.kiev.ua/handle/123456789/155239
Let R be a commutative super-ring with unity 16= 0. A proper super ideal of R is a super ideaI of R such that I 6=R.Letφ:I(R)→I(R)∪ {∅}be any function, where I(R) denotes the set of all proper super ideals of R. A homogeneous element a∈R is φ-prime to Iifra∈I−φ(I) whereris a homogeneous element in R, then r∈I. We denote byνφ(I) the set of all homogeneous elements in R that are notφ-prime to I. We define Ito beφ-primal if the set P=([(νφ(I))0+ (νφ(I))1∪ {0}] +φ(I) : ifφ6=φ∅(νφ(I))0+ (νφ(I))1: ifφ=φ∅forms a super ideal of R. For example if we takeφ∅(I) =∅(resp.φ0(I) = 0), aφ-primal superideal is a primal super ideal (resp., a weakly primal super ideal). In this paper we study several generalizations of primal super ideals of R and their properties.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Generalization of primal superideals
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Generalization of primal superideals
spellingShingle Generalization of primal superideals
Jaber, A.
title_short Generalization of primal superideals
title_full Generalization of primal superideals
title_fullStr Generalization of primal superideals
title_full_unstemmed Generalization of primal superideals
title_sort generalization of primal superideals
author Jaber, A.
author_facet Jaber, A.
publishDate 2016
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let R be a commutative super-ring with unity 16= 0. A proper super ideal of R is a super ideaI of R such that I 6=R.Letφ:I(R)→I(R)∪ {∅}be any function, where I(R) denotes the set of all proper super ideals of R. A homogeneous element a∈R is φ-prime to Iifra∈I−φ(I) whereris a homogeneous element in R, then r∈I. We denote byνφ(I) the set of all homogeneous elements in R that are notφ-prime to I. We define Ito beφ-primal if the set P=([(νφ(I))0+ (νφ(I))1∪ {0}] +φ(I) : ifφ6=φ∅(νφ(I))0+ (νφ(I))1: ifφ=φ∅forms a super ideal of R. For example if we takeφ∅(I) =∅(resp.φ0(I) = 0), aφ-primal superideal is a primal super ideal (resp., a weakly primal super ideal). In this paper we study several generalizations of primal super ideals of R and their properties.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155239
citation_txt Generalization of primal superideals / A. Jaber // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 202-213. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT jabera generalizationofprimalsuperideals
first_indexed 2025-12-07T16:30:31Z
last_indexed 2025-12-07T16:30:31Z
_version_ 1850867744685162496