О наилучших L₁-приближениях функциональных классов сплайнами при наличии ограничений на их производные
Знайдено точну асимптотику (при n→∞) найкращих L₁ наближень класів Wr₁ періодичних функцій сплайнами s∈S₂n,r∼−₁ (S₂n,r∼−₁ —множина 2π-періодичних поліноміальиих сплайнів порядку r−1, дефекту 1,з вузлами в точках kπ/n,k∈Z) такими, що V2₀S(r-1)≤1+ɛn де {ɛn}∞n=1 — спадна послідовність додатних чисел т...
Збережено в:
| Дата: | 1999 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут математики НАН України
1999
|
| Назва видання: | Український математичний журнал |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/155327 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | О наилучших L1-приближениях функциональных классов сплайнами при наличии ограничений на их производные / В.Ф. Бабенко, Н.В. Парфинович // Український математичний журнал. — 1999. — Т. 51, № 4. — С. 435–444. — Бібліогр.: 9 назв. — рос. |