Intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides

Optimal structures and intramolecular web of H-bonds of cytidinc, undine, thymidine, 1heir deoxyribo-analogues and some O5'-, O3'-deutero derivatives were studied by means of MNDOl H semiempirical quantum-chemical method. Effect of the intramolecular H-bonda on the slereochemical structure...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1998
Автори: Mishchuk, Y.R., Hovorun, D.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 1998
Назва видання:Биополимеры и клетка
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/155438
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides / Y.R. Mishchuk, D.M. Hovorun // Биополимеры и клетка. — 1998. — Т. 14, № 4. — С. 360-370. — Бібліогр.: 36 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155438
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1554382025-02-09T09:55:46Z Intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides Внутрішньомолекулярні водневі зв'язки та структурна нежорсткісті піримідинових нуклеозидів Внутримолекулярные водородные связи и структурная нежесткость пиримидинових нуклеозидов Mishchuk, Y.R. Hovorun, D.M. Optimal structures and intramolecular web of H-bonds of cytidinc, undine, thymidine, 1heir deoxyribo-analogues and some O5'-, O3'-deutero derivatives were studied by means of MNDOl H semiempirical quantum-chemical method. Effect of the intramolecular H-bonda on the slereochemical structure of nucleosides (particularly, on the stabilization of anti conformation), on the physico-chemical characteristics of nucleoside molecules (heat of formation, dipolc moment, first adiabatic ionization potential and the charge distribution), and on the dynamical characteristics of pyrimidine nucieosides (barriers of the interconvertion, frequencies of the torsional vibrations) was elucidated. The intramolecular 11-bonds in polynudeolides and their influence on the nucleic acid architecture, and nonlinear dynamic properties arc discussed. Оптимізовані структури цитидину, уридину і тимідину, їхніх дезоксирибо-аналогів та деяких О5', О3'-депротонованих похідних отримані за допомогою напівемпіричного квантовохімічного методу MNDO/H. Виявлено сітки внутрішньомолекулярних водневих зв'язків піримідинових нуклеозидів та вивчено їхній вплив на. стереохімічну структуру молекул (зокрема, на стабільність anti-конформації), фізико-хімічіні параметри /теплоту утворення, дипольний момент, потенціал, іонізації та розподіл зарядів), а також на динамічні характеристики піримідинових нуклеозидів (бар'єри інтер конверсії, частоти торсійних коливань). Обговорюється присутність внушріишьомолекулярних водневих зв'язків у полі нуклеоіпидах та їхнє значения у формуванні, структури та нелінійної динаміки нуклеїнових кислот. Оптимизированные структуры цитидина, уридина и тимидина, их дезоксирибо аналогов и некоторых О5'-, О3’ -депротонированных производных получены с помощью полуэмпирического квантовохиминеского метода. MNDO/H. Обнаружены сетки внутримолекулярных водородных связей пиримидиновых нуклеозидов и исследовано их влияние на стереохимическую структуру молекул с в частности, на стабильность anti-конформации), физико-химические параметры (теплоту образования, дипольный момент, потенциал ионизации и распределение зарядов), а также на. динамические характеристики пиримидииовых пуклеозидов (барьеры интерконверсии, частоты торсионых колебании). Обсуждается наличие внутримолекулярных водородных связей в полинуклеотидах и их значение в формировании структуры и нелинейной динамики нуклеиновых кислот. 1998 Article Intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides / Y.R. Mishchuk, D.M. Hovorun // Биополимеры и клетка. — 1998. — Т. 14, № 4. — С. 360-370. — Бібліогр.: 36 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.0004E0 https://nasplib.isofts.kiev.ua/handle/123456789/155438 en Биополимеры и клетка application/pdf Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Optimal structures and intramolecular web of H-bonds of cytidinc, undine, thymidine, 1heir deoxyribo-analogues and some O5'-, O3'-deutero derivatives were studied by means of MNDOl H semiempirical quantum-chemical method. Effect of the intramolecular H-bonda on the slereochemical structure of nucleosides (particularly, on the stabilization of anti conformation), on the physico-chemical characteristics of nucleoside molecules (heat of formation, dipolc moment, first adiabatic ionization potential and the charge distribution), and on the dynamical characteristics of pyrimidine nucieosides (barriers of the interconvertion, frequencies of the torsional vibrations) was elucidated. The intramolecular 11-bonds in polynudeolides and their influence on the nucleic acid architecture, and nonlinear dynamic properties arc discussed.
format Article
author Mishchuk, Y.R.
Hovorun, D.M.
spellingShingle Mishchuk, Y.R.
Hovorun, D.M.
Intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides
Биополимеры и клетка
author_facet Mishchuk, Y.R.
Hovorun, D.M.
author_sort Mishchuk, Y.R.
title Intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides
title_short Intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides
title_full Intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides
title_fullStr Intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides
title_full_unstemmed Intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides
title_sort intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides
publisher Інститут молекулярної біології і генетики НАН України
publishDate 1998
url https://nasplib.isofts.kiev.ua/handle/123456789/155438
citation_txt Intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides / Y.R. Mishchuk, D.M. Hovorun // Биополимеры и клетка. — 1998. — Т. 14, № 4. — С. 360-370. — Бібліогр.: 36 назв. — англ.
series Биополимеры и клетка
work_keys_str_mv AT mishchukyr intramolecularhydrogenbondsandstructuralnonrigidityofpyrimidinenucleosides
AT hovorundm intramolecularhydrogenbondsandstructuralnonrigidityofpyrimidinenucleosides
AT mishchukyr vnutríšnʹomolekulârnívodnevízvâzkitastrukturnanežorstkístípírimídinovihnukleozidív
AT hovorundm vnutríšnʹomolekulârnívodnevízvâzkitastrukturnanežorstkístípírimídinovihnukleozidív
AT mishchukyr vnutrimolekulârnyevodorodnyesvâziistrukturnaânežestkostʹpirimidinovihnukleozidov
AT hovorundm vnutrimolekulârnyevodorodnyesvâziistrukturnaânežestkostʹpirimidinovihnukleozidov
first_indexed 2025-11-25T14:39:19Z
last_indexed 2025-11-25T14:39:19Z
_version_ 1849773589699493888
fulltext I S S N 0 2 3 3 - 7 6 5 7 . б и о п о л и м е р ы и к л е т к а . 1 9 9 8 . Т . 1 4 . № 4 Intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides Yanina R. Mishchuk, Dmytro M. Hovorun Institute of M o l e c u l a r B i o l o g y a n d G e n e t i c s of U k r a i n i a n N a t i o n a l A c a d e m y of S c i e n c e s 1 5 0 vul. Z a b o l o t n o h o , 2 5 2 1 4 3 K y i v , U k r a i n e Optimal structures and intramolecular web of H-bonds of cytidinc, uridine, thymidine, their deoxyribo- analogues and some 05'-, О У -deuie.ro derivatives were studied by means of MNDO/H semiempirical quantum-chemical method. Effect of the intramolecular H-bonds on the stereochemical structure of nucleosides (particularly, on the stabilization of ant і conformation), on the physico-chemical characteristics of nucleoside molecules (heat of formation, dipole moment, first adiabatic ionization potential and the charge distribution), and on the dynamical characteristics of pyrimidine nucleosides (barriers of the inierconvertion, frequencies of the torsional vibrations) was elucidated. The intramolecular II bonds in polynucleotides and their influence on the nucleic acid architecture and nonlinear dynamic properties are discussed. Introduction. Nucleoside molecules exhibit many pos­ sibilities as model objects for biophysical inves­ tigations [] ]. The structure of isolated nucleoside molecule is complicated and nonrigid [2, 3 ]. Pyri­ midine nucleosides have in particular a higher barr ier of rotation around glycoside bond as purine ones. While it is possible for pyrimidines to adopt the syri conformations, it is slerically difficult and rarely observed in nature (see [4—6 | and references there) and leads to the preferring of a/z/^-conformation o:f sugar. The optimal conformation of pyrimidine nuc­ leoside is determined by the dipole-dipole inter­ actions, torsion rigidity of glycoside C l ' N l bond and steric h indrances . But there are additional inter­ actions between the base residue and the sugar moiety contributing in stabilization of the nucleoside molecule in certain conformation. Effect of such interactions was found in some cases. For example, Emerson and Sundaral ingam [7 | in their study of d ihydrour id ine 3'-monophosphate hemihydrate pointed out that puckering of the base could influence the ribose puckering due to inter­ actions of the C6 methylene proton with the ribose Van Lier, Smits and Buck [4 | in quantum-chemical study of te t rahydrofuryl - l - (5-methylcytos ine) explain © Ya. R. MIS H CI I UK, l>. M. H O V O R U N , 1998 its unusually high anti-syn transition barrier in terms of an electronic effect of the / ;a /Yv-substi luted methyl group on the and C2 ' methylene fragment through the carbonyl C2 group. Moreover, the hydrogen bonds (H-bonds) in­ volving atoms of the base residue and the sugar moiety were supposed in several s tudies, such as N M R i n v e s t i g a t i o n s of m o n o n u c l e o t i d e s [ 8 ] ( 0 2 H . . . 0 2 ) , crystallographic refinement of tRNA |9J ( 0 2 T I . . . 0 2 , C 6 H . . . 0 5 ' ) , r e f i n e m e n t of cy t id ine crystal s tructure [101 ( C 6 H . . . 0 5 ' ) , PM3 [11 I and C N D O / 2 [12] semiempirical quantum chemical calcu­ lations ( C 6 H . . . 0 5 ) . Ts ' o [13] in NMR investigation of poly(U) also assumed the contribution of hydrogen bonding in interactions of C6H proton with the nearby ribose oxygen. The possibility of participation of CH groups in H-bonds in nucleic acid consti tuents was supported by the experimental [14, 15] and theoretical [12, .16] investigations. It also is known that the existence of С-Н. . . 0 H-bond interactions in the nucleic acid polymers have a strong influence on their molecular structure [12, 16 |. The present s tudy was under taken to elucidate by means of M N D O / H semiempirical quantum-che­ mical calculation method, what kinds of intramo­ lecular H-bonds are in pyrimidine nucleosides and what is the influence of these H-bonds on the 360 http://-deuie.ro parameters of structural пол rigidity and dynamics of the nucleosides Methods. M N D O / H semiempirical quantum-che­ mical calculation method was shown to be useful for the investigation of the stereochemical nonrigidity of nucleotide bases [17] and in calculation of the parameters of hydrogen bonds [18] . It slightly un­ derestimates the values of geometric and energetical characteristics of nucleotide base nonplanari ty effects [1 ], allowing о consider more precisely many of phenomena having been earlier neglecting. The structure, 1R spectra and some physico- chemical properties of pyrimidine nucleosides were calculated with full optimization of all geometric parameters with the gradient norm < 0 . 0 1 . Starting geometries were obtained by the composition of fully optimized structures of components: nucleotide bases [191 and ribose (deoxyribose) molecules. Optimi­ zation of the structures of all pyrimidine nucleosides were started from anli-conformation of the sugar moiety with respect to base residue. Intramolecular H-bond enthalpies were obtained by comparing of two different heais of formation of the nucleoside mole­ cule which were calculated in cases «with» and «without» intramolecular H-bonds . For more details of calculations see [17, 19] . Results and Discussion. The resulting lowesi energy structures of calculated pyrimidine nucleosides cytidine (Cyd) , uridine (Urd) , thymidine (Thd) and their deoxynbo-analogues (dCyd, dUrd , dThd res­ pectively) are shown in Figure. All the pyrimidine nucleoside sugar moieties are in an//-conformation with respect to the base residues and in gauche- gauche conformation a rcund C 4 ' - C 5 ' bond. This is in accordance with the results of previous molecular modelling | 51 , so as semiempirical quantum-chemica MNDO [4 1 and C N D O / 2 [12] calculations in which the preference of this conformation for pyrimidine nucleosides was shown. In Figure, calculated values of the x ( 0 4 C J N1C2 dihedral angle) , which charac­ terizes the art//-conformation, are exhibited. As one can see, x is somewhat higher in ribonucieosides than in deoxyribomjclcosides. Besides, in cytidine nuc­ leosides x values are obviously higher than in uridine and thymidine ones. In the structures shown in the Figure the cal­ culated intramolecular H-bonds a re presented forming the special web around the each nucleoside molecule We have found three common types of intramolecular H-bonds in pyrimidine nucleosides: H-bonds in­ volving atoms of the base residue and the sugar moiety, H-bonds between the base fragment atoms and H-bonds between the furanose ring atoms. The geometric and energetical parameters of the calculated INTRAMOLECULAR H Y D R O G E N B O N D S O F PYRIMIDINE N U C L E O S I D E S intramolecular H-bonds are presented in Table 1. For comparison, the intramolecular H-bonds of the dif­ f e r e n t o r g a n i c c o m p o u n d s h a v e e n e r g i e s 2 - И 0 kcal /mol [20] . It must be noted that all intra­ molecular H-bonds , except N 4 H ' . . . N 3 (here and below — H' is the proton of < C N H 2 fragment ot the Cyt base residue involved in the N H . . . 0 inter- molecular H-bond upon Gua:Cyt Watson-Crick base pairing and H " is the ano ther aminoproton) (in Cyd and dCyd) and C 6 H . . . 0 5 ' , are considered in isolated pyrimidine nucleosides for the first time. T h e bifurcated intramolecular H-bonds in organic chemistry are known to be mutually affected [20, 21 [. In nucleosides, the web of the intramolecular H- bonds include not only bifurcated, but also the H-bonds which are competitors in formation of nuc­ leoside conformation (for example, H-bonds with C6H and C 2 = 0 2 groups) (Figure) . This is because they demonstra te pronounced cooperative effect: all H-bonds a re mutually weakened by 0.29, 0.60 and 0.80 kcal/mol for Cyd, Urd and Thd respectively, and these values a re much higher for dCyd, dUrd and dThd : 1Л0, 2.10 and 2.16 kcal /mol respectively. Result ing enthalpy of all intramolecular H-bonds are 18.07 and 14.32 kcal /mol for Cyd and dCyd, 19.21 and 15.64 kcal /mol for Urd and dUrd , 18.97 and 15.41 kcal/mol for Thd and d T h d . Our results exhibit the influence of the intra­ molecular H-bonds on the physico-chemical charac­ teristics of the nucleosides: heat of formation, dipole moment , first adiabatic ionization potential and the fundamental vibration frequencies — some of these parameters are shown in Table 2. T h e data presented in Table 3 demonst ra te the most prominent structural peculiarities of the nuc­ leosides and the effect of the intramolecular H-bonds on the conformation and mutual orientation of their structural fragments. Intramolecular H-bonds between the base residue and the sugar moiety and nonrigidity of the pyrimidine nucleoside, CI 'H . . . 02=C2 i n t r a m o l e c u l a r H-b о n d. Earlier at tention have not been put on the role of С Г Н group in the hydrogen bonding between base residue and sugar moieties in nucleosides. There were assumptions about the participation of С2=02 in the Fl-bond but they were concerned with 0 2 ' H group in pyrimidine nucleosides [4, 8, 9 ] . Recently we studied the effect of N1 methylation of pyrimidine nucleotide bases on their structural nonrigidity 122]. The re the intramolecular H-bond between С2=02 and C1H of methyl group have been found (in agreement with further ab initio inves­ tigations [23]) which serve us as the model for the С Г Н . . . 0 2 = С 2 interaction in nucleosides. The exist- 361 MISHCMUK. Ya. R , H O V O R U N I) M. Thd, Z= 136.8° dThd.X-m.O" (TIM 136.9°) (dUrd, Z=133.5°) F u l l y o p t i m i z e d b y M N D O / H s t r u c t u r e s of p y r i m i d i n e n u c l e o s i d e s wi th the ne twork of the i n t r a m o l e c u l a r h y d r o g e n b o n d s {% is the 0 4 ' C 1 ' N 1 C 2 d i h e d r a l a n g l e ) 362 ence of C T H . . . 0 2 = C 2 H-bond can be evidenced by diffuse low frequency band — satellite of fundamental stretching vibration of С Г Н centered at ~ 2785 cm"1 in the nucleosides IR spectra [24] . The enthalpies of the С Г Н . . . 0 2 intramolecular H-bond was shown (Table 1) to be of the same order of value HI uridine and thymidine nucleosides, but INTRAMOLECULAR H Y D R O G E N B O N D S OF F'YRIMIDJNE NUCLEOSIDES they are by 0 . K H 0 . 1 6 kca l /mol smaller in cytidine ones: 3.47 kcal /mol (Cyd) and 3.57 kcal /mol (Urd and T h d ) ; 3.67 kcal /mol (dCyd) and 3.83 kcal/mol (dUrd and d T h d ) . Besides, one can see that in r i b o n u c l e o s i d e s С Г Н . . . 0 2 H - b o n d s a r e by 0.20-^0.26 kcal /mol weaker than in their deoxyribo- analogues. These tendencies a re in accordance with Table I Energetic and geometric characteristics of intramolecular hydrogen bonds in Cyd, Urd, Thd and their deoxyribo-analogues x H-bond АН. В Enthalpy, kcal /mol Distance И В , A Angle A H B i.degrers.) Cvd (1С y d Urd dUrd T h d d'l'hd 363 MISHCHUK Ya. R., H O V O R U N D. M. Table 2 Some physico-chemical characteristics and frequencies of torsional vibrations of pyrimidine nucleosides in cases «with» (H*Q) and «wiihout» (H = 0) intramolecular hydrogen bonds Table 3 Structural perturbation of pyrimidine ribo- and. deoxyribonucleosides in cases «with» (H * 0) and <<without»(// = 0) intramolecular hydrogen bonds (the data, obtained from О UP Molecular Modelling Package) 364 the peculiarities of the base residue orientation: larger values of x (Figure) and Н Г С Г Ш C 2 dihedral angles (Table 3) correspond to molecules having weaker C 1 H . . . 0 2 H-bonds . On the other s ide ; accordingly to our data in Cyd, Urd and Thd the 0 2 ' . . . 0 2 distances are respec­ tively 3.57 A, 3.70 A and 3.82 A and 0 2 H 0 2 angles values are 113% 108° and 116°. Such interaction of 0 2 ' H with C2==02 can reduce the energy of nucleo­ side not more than by 0.35 kcal /mol . This fact is in agreement with the same conclusion of Young and Kallenbach (25 J that 0 2 H is unlikely to be involved in H-bond with base atoms because of the poor stereochemical fit. I n t r a m о I e с u 1 a r H-b о n d s i n v o ­ l v i n g C6H g r o u p a n d t h e s u g a r m o i e t y о x у g e r s. Earlier, assumptions have been made about the interaction of C6H pyrimidine group with ribose oxygens in the experimental studies [7, 10, 26—28 |. We have found two bifurcated intramolecular H-bonds with the C6H group partici­ pation in pyrimidine nucleosides: C 6 H . . . 0 5 ' and C6H. . . 04 ' (Figure, Table 1). From the data in Table 1 one can see, that the enthalpies of C 6 H . . . 0 5 H-bond in Thd and dThd (3.98 and 3.49 k c a l / m o l respec t ive ly) a r e by 0.29 : 0.51 kcal/mol smaller than in other nucleosides correlating with the larger C 6 H . . . 0 5 ' H-bond lengths. The PM3 calculated H . . . 0 5 ' distances [11] show the same tendency: 1.851 A in p d T is larger than 1.836 A in pdC. Accordingly to results of C N D O / 2 calculation [12] the C6FL. .05 ' H-bond in Urd is not weaker than 2 kcal/mol — it is the contribution of this H-bond to the energy of gauche-gauche conformation of nuc­ leoside. Further stabilization of such conformation in polynucleotides was predicted due to the streng­ thening of C 6 H . . . 0 5 ' H-bond when 0 5 ' belongs to P0 4 ~ | 12 ] , It may be the reason for a number of studies concerning the C 6 H . . . 0 5 ' intramolecular H- bond interactions in nucleotides (see [6—9, 11, 12. 25, 26] and bibliography there) . The intramolecular H-bond C 6 H . . . 0 4 ' have not been found in above mentioned studies. In thymidine nucleosides the largest enthalpies of C 6 H . . . 0 4 ' H- bond are observed (Table 1), so the intramolecular H-bonds involving C6H group in Thd and dThd have the closer to each other enthalpy values (AE = 0.63 and 0.55 kcal/mol respectively) than other nucleo­ sides (ДЕ = 1.06 4-1.34 kca l /mol ) . Besides, in r ibo- nucleosides C 6 H . . . 0 5 ' a n d C 6 H . . . 0 4 ' a r e by 0.41 4-0.58 kcal/mol s t ronger than corresponding H~ bonds in dcoxynucleosides. These features of the H-bond network of nucleosides have reflections in INTRAMOLECULAR H Y D R O G E N B O N D S OP PYRIMIDINE NUCLEOSIDES their s tructures: larger values of % (Figure) and Н Г С Г Ы 1 С 2 angles (Table 3) are observed in mole­ cules with weaker С Г Н . . . 0 2 H-bonds and stronger C 6 H . . . 0 5 ' and C 6 H . . . 0 4 ' H-bonds . From the Table 3 one can conclude, that the neglecting of the intramolecular H-bonds results in the essential changes in the dihedral angle values of nuc leos ides , especially consis t ing with glycoside N 1 C 1 ' bond, that reach 19° for nonhydrogen atoms and 90° for protons. T h u s , intramolecular H-bonds involving atoms of the base res idue and the sugar moiety ( C 1 H . . . 0 2 , C 6 H . . . 0 4 ' and С6И. . . 05 ' ) put the important contribution in the stabilization of anti- c o n f o r m a t i o n of p y r i m i d i n e n u c l e o s i d e s (and C 6 H . . . 0 5 ' H-bond addit ionally support also gauche- gauche conformation [12]) . T h e intramolecular H-bonds between the base residue and the sugar moiety also affect the dynamics of pyrimidine nucleosides, particularly the torsion motion. In the Table 2 we have compared the calculated frequencies of torsion (libration) vibrations ( w r ) in nucleosides in cases «with»(H 0) and «wit- hout» (H = 0) intramolecular H-bonds . According to our results , these low frequency torsional vibrations are not only anharmonical but also anisotropic: the direction of decreasing of the Н Г С Г Ы 1 С 2 dihedral angle value of nucleoside is preferred. Intramolecular H-bonds and structural nonrigi- dity of the base residues. In the optimized structures of Cyd, Urd , Thd and their deoxyribo-analogues the intramolecular H-bonds between the base residue atoms are observed: N4H ' . . .N3 H-bond in cytosine and N 3 H . . . 0 2 , N 3 H . . . 0 4 in uracil and thymine bases (Figure, Table 1). Cytidine r ibo- and deoxyribonucleosides have the weaker N 4 H 4 . . N 3 H-bond (2.92 and 2.76 kcal/mol respectively) in comparison with isolated Cyt nucleo­ tide base, where such H-bond have the enthalpy 2.99 kcal /mol [18] . Existence of the N4H ' . . ,N3 H- bond in anomalous nucleoside 6-azaCyd was fixed experimentally by means of PMR spectroscopy [29] . In Ura, the calculated enthalpy of N3H. . . 02 intramolecular H-bond (1.94 kcal /mol [18]) is smal­ ler than and of N 3 H . . . 0 4 H-bond (2.22 kcal/mol [18]) , while in Urd and dUrd N 3 H . . . 0 2 H-bond is somewhat stronger than N 3 H . . . 0 4 (Table 1) — it must be due to the sugar moiety presence and its H-bonding with the base, but the mechanism of this effect is ra ther complicated. The base residues of Cyd, Urd and Thd nucleo­ sides and their deoxyribo-analogues all have slightly puckering base r ings, in accordance with the data of the previous quantum-chemical structural investiga­ t ions of free nuc l eo t i de b a s e s [ 1 9 ] . Maximal 365 MISHCHI.'K Vi; \l, MOVOkllM I). M deviat ions from planar i ty a re observed for the N1C1 glycoside bond region of the pyrimidine nuc­ leoside base rings with dihedral angle values not more than 2,6°, 3.7°, 3.6° for Cyd, Urd , Thd and 3.7 C , 5.9% 6.1° for dCyd, dUrd and dThd respectively. It would be noted that the neglecting of the intramolecular H-bonds in the base residues results in increasing of the base ring puckering: corresponding dihedral angle reach the values 11.7% 9.6°, 9.3° for Cyd, Urd, Thd and 8.0°, 6.5°, 7.1° for dCyd, dUrd , dThd respec­ tively. Such behavior of the base rings upon the influence of intramolecular H-bonds shows that in the nucleosides the bases are also stereochemically non- rigid fragments 119]. The cytosine base in the nucleoside has the asymmetrically pyramidal aminogroup, so as Cyt in the isolated state [19, 3 0 ] . T h e N 4 H 4 . . N 3 intramo­ lecular H-bond affects the parameters of > C N H , fragment pyramidali ty (Table 3) . T h e character of potential energy hypersurface which determines ste­ reochemical nonrigidity of Cyt base remains almost unchanged [31 j . T h e base residues with aminogroups in nucleosides are usually considered as planar rigid structures [3, 7, 9—12] . In contrast with this appro­ ach, our data evidenced that the planar inversion barrier of > C N H 2 fragment of Cyt residue in nucle­ oside is LI (Cyd) —1.2 (dCyd) times higher than in free Cyt (0.15 kcal /mol [32]) and consist 0.17 and 0.18 kcal /mol respectively. These data exhibit parti­ cularly that the р/г-соп jugation of lone electron pair of N4 with ^-e lect ron system of the base ring reduce upon the transition from nucleotide base to nuc­ leoside. T h e internal rotation barr iers of the > CNH : , fragment mainly decrease in nucleosides in com­ p a r i s o n w i t h f r e e C y t a n d c o n s i s t 3 . 3 7 , 10.56 kcal/mol for Cyd and 2.33, 10.46 kcal /mol for dCyd (3.72, 10.47 kcal /mol for Cyt [17]) for rotation to the N3 atom and C5H bond respectively. T h e intermediate state with two aminoprotons turned to the N3 atom (with planar base ring and plane symmetrical location of protons) is stabilized by the bifurcated pair of int ramolecular N 4 H ' . . . N 3 and N4H" . . .N3 H-bonds with the resulting enthalpy 3.59 and 3.55 kcal/mol for Cyd and dCyd respectively. The internal rotation of aminogroup is the dipole active process, transit ion dipole moment (~ 0.8 D) lies in the ring plane in 90° with respect to C4N4 bond. Intramolecular H-bonds and nonrigidity of the sugar moiety. Analysis of a number of crystal struc­ tures of nucleosides shows that furanose ring is usually nonplanar conformationally nonrigid molecule [2] . Theoretical studies and several NMR experi­ ments show for furanose two preferred ring puckering conformations, C2 ' -endo and СЗ ' -endo , with almost equal energy and 2—5 kcal /mol barrier of inter- conversion through 0 4 ' - e n d o intermediate confor­ mation (see [5, 6 ] and bibliography there) . According to our data , all energy differences between C2 ' -endo , СЗ ' -endo and 0 4 ' - e n d o confor­ mations of furanose ring in the pyrimidine nucleo­ sides are find to be not more than 0.95 kcal/mol. This fact is in agreement with the results of the Levitt and Warshel 133 ] on the force field calculation of ener­ getic profile of furanose ring in nucleosides, where such energy differences including repuckering barrier consist not more than 0.60 kca l /mol . In pyrimidine nucleosides with either C2 ' -endo or СЗ ' -endo sugar puckering modes the ribose atoms are involved into О З Н . . . 0 2 ' H-bonds , while the 2 ' -deoxyr ibose a toms form C 4 ' H . . 0 3 H-bonds , which are more than 1.5 times weaker than the 0 3 H . . . 0 2 ' in ribose (Figure, Tab le 1). In spite the fact that in crystal s t ructures of some nucleoside derivatives [27] 0 2 ' H . . . 0 3 ' intramolecular H-bond occurs more frequently than 0 3 ' H . . . 0 2 \ in free pyrimidine nucleosides the fully optimized confor­ m a t i o n w i t h 0 2 Н . . . О З ' H - b o n d is 4.00-^5.95 kcal /mol higher in energy than confor­ mation shown in Figure. T h e intramolecular H-bonds involving the sugar moiety atoms reduce the furanose ring puckering parameters (Table 3) and cause the essentially free interconvertion at room temperatures . Increase of dihedral angle values, which characterized the fura­ nose ring puckering, is observed when the amplitude of torsion motions around glycoside C l ' N l bond increase. This is due to the weakness of the base residue-sugar H-bonds caused by the torsion motions. Other studies using AMI and PM3 semiempirical quantum-chemical methods [11] , in which the full optimization process involve calculation of hydrogen bonding interactions between all accessible atoms, also show the unusually small values of the sugar puckering parameters . Influence of intramolecular H-bonds results in decrease of the interconvertion barr ier of furanose ring in pyrimidine nucleosides. 05- and 03'-deprotonated nucleoside molecules. We have modelled the charge situation in nucleotides and polynucleotides (polyanions) by deprotonalion of Cyd and dCyd molecules at 0 5 ' and 0 3 sites. This was done in order to elucidate the effect of negative charged phosphate groups on the stereochemical non­ rigidity and intramolecular H-bond web parameters of nucleosides. It was found that the change of the charge state of nucleoside molecule by the deprotonation of its 366 sugar moiety does nol destroy the intramolecular H-bond web. The deprotonation results in essential perturbation of the balance of intramolecular H-bonds in nucleoside (Table 4) and increasing of their cooperativity (Л = - 2 . 1 0 4 3.64 kca l /mol) . In the nuc­ leosides deprotonated at the 0 5 ' site C 6 H . . . 0 5 ' H-bond becomes much stronger, that results in the weakness of С Г Н . . . 0 2 and other H-bonds (Table 4) . This is in accordance with the predicted in [12] strengthening of C 6 H . . . 0 5 ' H-bond when 0 5 ' belongs to P0 4 ~. In the case of 0 3 ' deprotonation site C 6 H . . . 0 5 ' becomes weaker (Table 4) because of the turning of 0 5 proton to C6H (Table 5 ) , which reduces the interaction of 0 5 ' atom with C6H group. The data in Table 5 describe the changes of most prominent structural parameters — dihedral angles in case of neglecting of intramolecular H-bonds in the anions under discussion. The structural per turbat ion of cytidine nucleo­ sides under the deprotonation can be considered particularly by comparison of % values of anions: INTRAMOLECULAR H Y D R O G E N B O N D S OF PYRIMIDINE NUCLEOSIDES 134.6° (Cyd C ) 5/~), 133.6° ( d C y d 0 5 ) , 140.1° ( C y d 0 , / ) and 121.2° ( d C y d 0 3 ) with corresponding angles in Cyd and dCyd (Figure) . T h e deprotonation of the sugar moiety affects also the stereochemical non- rigidity of the base res idue in nucleoside molecule. In Cyd" and dCyd~ the aminogroups become more pyra­ midal, the base ring puckering parameters decrease (Table 5 ) , their p lanar inversion barriers are 1.7 (Cyd - ) —1.8 (dCyd") times higher and the internal anisotropic rotation barr iers a re reduced by 20— 40 %. These effects can be explained particularly by the reducing of ря-conjugation in the base residue upon the influence of the surplus negative charge in the sugar moiety. T h e reverse is also true: possible mtermolecular interactions which change the struc­ tural and dynamic properties of the base, especially in the vicinity of < C N H 2 fragment a t tachment , cause the changes in charge distribution in the sugar moiety. Thus the local change of the charge state of polynucleotide, for example, in the protein-nucleic Table 4 Energetic and geometric characteristics of intramolecular hydrogen bonds in deprotonated Cyd and dCyd (Cydos ~, Cydoy~, dCydos' dCydoy anions) С у c l o y d C y d o . v С у d o r " d C y d o . v 367 MISHfHl/K Ya. R., HOVORUN D. M. Perturbation of geometric structure of deprotonated Cyd and dCyd in cases «with» (H ф 0) and « without» (H**0) all intramolecular hydrogen bonds (data from the О UP Molecular Modelling Package) acid recognition processes, can affect its structural and dynamical properties, particularly the local curva­ ture | 341 , through the dis turbance of p7r-conjugatior of base residue. Transformation of the intramolecular H-bond web in polynucleotides. T h e intramolecular CI Т І . . . 0 2 ' . C6H6 . . . 04 ' , C 6 H 6 . . . 0 5 ' H-bonds are expected to be also in polynucleotides because there the pyrimidine base and sugar a re in anгг-conformation | 4 , 6 ]. Moreover, the C 6 H . . . 0 5 ' H-bond in the polynuc­ leotide structures [9, 25 | is predicted to be streng­ thened when 0 5 ' belongs to P 0 4 ~ [12 J. It seems to be- likely that 0 2 T I groups in polynucleotides are invol­ ved in H-bond with 3 ' - P 0 4 ~ group (directly or thro­ ugh water molecules) [35 | and with 0 4 ' of neighbour furanose ring along the polynucleotide s t rand [9, 25. 36 j . Indeed, ii is known that poly(dT) and poly(dU) don' t form single s t rand helical s t ructure and on the same conditions that poly(rT) poly(rU) does (see [6 j and bibliography there) . And study of CD spectra leads 'TVо 113 I to the conclusion that poly(rC) single s t rands have more secondary s tructure (stacking) than poly (dC) in the same conditions. Hydrogen bonding of 0 2 ' H groups with 3 'phosphate and neig­ hbour furanose can successfully explain such relative stability of RNA s t rands with respect to DNA ones. Conclusions. The structural and dynamical pro­ perties of pyrimidine nucleosides are shown at first to be formed with participation of the web of cooperative i n t r a m o l e c u l a r H - b o n d s wi th e n t h a l p i e s ~ 2— 4 kcal /mol . Involving of any site of the nucleoside into intermolecular hydrogen bonding (Watson-Crick pairing, specific solvent, crystal packing and so on) can per turb its intramolecular H-bond web that results in changes of structural and dynamical para­ meters of nucleoside. Pyrimidine nucleosides, their base residues and sugar moieties are stereochemically nonrigid struc­ tures . The aminogroup pyramidali ty and plane inver­ sion barr ier increase in nucleoside in comparison with the nucleotide base and these parameters also depend on the charge situation on the sugar moiety. The intramolecular H-bonds effect the stereochemical structure of nucleosides, conformation and mutual orientation of their fragments, particularly, intra­ molecular H-bonds involving atoms of the base resi­ due and sugar moiety put the important contribution in the stabilization of a/i/z-conformation of pyrimidine nucleosides. Intramolecular H-bonds affect the physico-che­ mical characteristics of pyrimidine nucleosides (heat of formation, dipole moment, first adiabatic ionization potential and the charge dis t r ibut ion) , and they also 368 can change the dynamical characteristics of nucleo­ side: barriers of the base residue and the sugar moiety interconvertion, frequencies of the torsional vibrations in nucleoside Intramolecular H-bonds in polynucleotides take part in the formation of the nucleic acid architecture and nonlinear dynamic propert ies. Local change of the charge distribution in the sugar region of polynuc­ leotide, for example, in the protein-nucleic acid recognition processes, can affect its structural and dynamical properties through the dis turbance of prr conjugation of base residue. Taking into ассошії of the intramolecular H- bonds is important for the NMR and IR spectra interpretation, for molecular modelling, for the eluci­ dation of mechanisms of structural and dynamic changes under molecular recognition processes. Я. P. Міщук, Д. М. Говорун В н у т р і ш н ь о м о л е к у . ч я р н і в о д н е в і з в ' я з к и та с т р у к т у р н а н е ж о р с т к і с т і . п і р и м і д и н о в и х н у к л е о з и д і в Р е з ю м е Оптимізовані структури цшпидину, уридину і тимідину, їхніх дезоксирибо-аналогів та деяких 05'~, ОЗ'-депротонованих по­ хідних отримані за допомогою напівемпіричного квантово- хімічного методу MNDO/H. Виявлено сітки внутрішньомо- лекулярних водневих зв'язків піримідинових нуклеозидів та вивчено їхній вплив на. стереохімічну структуру молекул (зокрема, на стабільність anti-конформації), фізико-хімічін параметри /теплоту утворення, дипольний момент, потен­ ціал, іонізації та розподіл зарядів), а також на. динамічні характеристики піримідинових нуклеозидів (бар'єри інтер конверсії, частоти торсійних коливань). Обговорюється при­ сутність внушріишьомолекулярних водневих зв'язків у полі нуклеоіпидах та їхнє значения у формуванні, структури то нелінійної динаміки нуклеїнових кислот. Я. Р. Мши,ук, Д. Л. Говорун В н у т р и м о л е к у л я р н ы е в о д о р о д н ы е с в я з и и с т р у к т у р н а я н е ж е с т к о с т ь п и р и м и д и н о в и х п у к л е о з и д о в Р е з ю м е Оптимизированные структуры цитидина, уридина и тим иди- на, их дезоксирибо аналогов и некоторых 05'-, 03 -депротони- рованных производных получены с помощью полуэмпирического квантовохиминеского метода. MNDO/H. Обнаружены сетки внутримолекулярных водородных связей пиоимидиновых пук­ леозидов и исследовано их влияние на стереохимическую стру­ ктуру молекул с в частности, на стабильность anti-конформа­ нии), физико-химические параметры (теплоту образования, дипольный момент, потоп циал ионизации и распределение зарядов), а также на. динамические характеристики пирими- дииовых пуклеозидов (барьеры интерконверсии, частоты тор- аюииых колебании). Обсуждается наличие внутримолекуляр­ ных водородных связей в колинуклеотидах и их значение в формировании структуры и нелинейной динамики нуклеиновых кислот. INTRAMOLECULAR H Y D R O G E N B O N D S O F PYRIMIDINE NUCLEOSIDES R E F E R E N C E S 1. Mishchuk У a, R. I n v e s t i g a t i o n of t h e p h y s i c o - c h e m i c a l nature of e l e m e n t a r y a c t s of p r o t e i n - n u c l e i c a c i d a n d n u c l e i c a c i d - n u c l e i c a c i d r e c o g n i t i o n on the m o d e l s y s t e m s of l ow m o l e c u l a r w e i g h t / / P h . D . T h e s i s . — K i e v , 1 9 9 3 . — 2 1 p. 2 . De Leeuw II. P. A/ . , de Haasnool C. A. G., Allona C. E m p i r i c a l c o r r e l a t i o n s b e t w e e n c o n f o r m a t i o n a l p a r a m e t e r s in / ? - D - f u r a n o s i d e f r a g m e n t s d e r i v e d from a s tat i s t ica l s u r v e y of crys ta l s t ruc tures of n u c l e i c a c i d c o n s t i t u e n t s . Full descr ip t ion of n u c l e o s i d e m o l e c u l a r g e o m e t r i e s in t erms of four p a r a m e t e r s / / Isr. J. C h e m . — 1 9 8 0 . — 2 0 , N 1 . — P . 1 0 8 — 1 2 6 . 3 . Ho/brook S. R., Kim S.-H. L o c a l mobi l i ty of n u c l e i c a c i d s a s d e t e r m i n e d from c r y s t a i l o g r a p h i c d a t a . I. R N A a n d В form D N A / / J. Мої . Bio l . — 1 9 8 4 . — 1 7 3 , N 3 . - - P . 3 6 1 — 3 8 8 . 4 . Van Lier J. J. C, Smits M. Г., Buck H. M. B-Z Trans i t i on in m e t h y l a t e d D N A . A q u a n t u m - c h e m i c a l s t u d y / / E u r . J. B i o c h e m . — 1 9 8 3 . — 1 3 2 , N 1 . — P . 5 5 — 6 2 . 5 . Gabb A., Harvey S. C o n f o r m a t i o n a l t rans i t i ons in potent ia l a n d free e n e r g y s p a c e for f u r a n o s e s a n d 2 ' - d e o x y n u c l e o s i d e s / / J. A m e r . C h e m . S o c — 1 9 9 3 . — 1 1 5 , N 1 0 . — P . 4 2 1 8 — 4 2 2 7 . 6. Saenger W. P r i n c i p l e s of n u c l e i c a c i d s t r u c t u r e . — N e w York: S p r i n g e r , 1 9 8 7 . — 5 8 4 p . 7. Emerson J., Sundaralingam M. S t r u c t u r e of the p o t a s s i u m sal t of the m o d i f i e d n u c l e o t i d e d i h y d r o u r i d i n e 3 ' - m o n o p h o s p h a t e h e m i h y d r a t e : c o r r e l a t i o n b e t w e e n t h e b a s e p u c k e r a n d s u g a r p u c k e r a n d m o d e l s for m e t a l i n t e r a c t i o n s with r i b o n u c l e i c a c i d l o o p s / / A c t a C r y s t . - 1 9 8 0 . — B 3 6 , pt 3 . — P . 5 3 7 — 5 4 3 . 8 . Schweizer M. P., Broom A. D., Ts'o P. O. P., Mollis D. P. S t u d i e s of i n t e r - a n d i n t r a m o l e c u l a r in terac t ion in m o n o ­ n u c l e o t i d e s b y pro ton m a g n e t i c r e s o n a n c e / / J. A m e r . C h e m . S o c — 1 9 6 8 . — 9 0 , N 4 . — P . 1 0 4 2 — 1 0 5 5 . 9 . Jack A., Lander J. E., Klug A. C r y s t a i l o g r a p h i c r e f i n e m e n t of Y e a s t P h e n y l a l a n i n e trans fer R N A at 2 . 5 A re so lu t ion / / J. Мої . B i o l . — 1 9 7 6 . — 1 0 8 , N 4 . — P . 6 1 9 — 6 4 9 . 1 0 . Purberg S., Petersen C. S., Romming C. A r e f i n e m e n t of the c r y s t a l s t ruc ture of c y t i d i n c / / Acta Crys t . — 1 9 6 5 . — 1 8 , N 2 . — P . 3 1 3 — 3 2 0 . 1 1 . Lively T. N., Jure ma M. W., Shields G C. H y d r o g e n b o n d i n g of n u c l e o t i d e b a s e pairs : a p p l i c a t i o n of t h e P M 3 m e t h o d / / Int. J. Q u a n t . C h e m . Q u a n t . B io l . S y m p . — 1 9 9 4 . — N 2 1 . — P . 9 5 — 1 0 7 . 12 . Amidon G. L., Anik S., Rulnn J. A n e n e r g y part i t ion ing a n a l y s i s of b a s e - s u g a r i n t r a m o l e c u l a r С - Н . . . 0 h y d r o g e n b o n d ­ ing in n u c l e o s i d e s a n d n u c l e o t i d e s / / S t r u c t u r e a n d c o n f o r m a ­ tion of n u c l e i c a c i d s a n d p r o t e i n - n u c l e i c a c i d i n t e r a c t i o n s / E d s M. S u n d a r a l i n g a m , S. T . R a o . — Bal t imore : Univ . P a r k press , 1 9 7 5 . — P . 7 2 9 — 7 4 4 . 1 3 . Ts'o P. O. P. D i n u c l e o s i d e m o n o p h o s p h a t e s , d i n u c l e o t i d e s , a n d o l i g o n u c l e o t i d e s / / B a s i c p r i n c i p l e s in n u c l e i c a c i d c h e m i s t r y E d . P . O . P . T s ' o . — N e w York: A c a d , p r e s s , 1 9 7 4 . Vol . 2 . — P . 3 0 5 — 4 6 9 . 1 4 . Sutor D. J. T h e C - H . . . O h y d r o g e n b o n d s in c r y s t a l s / / N a t u r e . — 1 9 6 2 . - 1 9 5 , N 4 8 3 6 . " — P . 6 8 — 8 2 .15. Bruskov V. I, Bushuev V. N., Poltev V. L N M R inves t iga t ion of H - b o n d s С - Н . . . 0 in t h e n u c l e o t i d e b a s e a n a l o g u e s / / Мої . B i o l o g y . — 1 9 8 0 . — 4 , N 3 . — P . 3 1 6 — 3 2 2 . 16 . Hovorun D. M., Kondratyuk І. V., Zlieltovsky M. V. N u c ­ l e o t i d e b a s e s a s C F I - a c i d s / / B i o p o l y m e r s a n d C e l l . — 1 9 9 5 . — 1 1 , N 5 . — P . 1 5 - - 2 0 . 17 . Hovorun D. M., Mishchuk Ya. R., Kondratyuk I. V. A b o u t the q u a n t u m - c h e m i c a l n a t u r e of the s t e r e o c h e m i c a l nonr ig id i ty of c a n o n i c a l n u c l e o t i d e b a s i s / / I b i d . — 1 9 9 6 . — 1 2 , N 5 . — P . 5 . 1 8 . Hovorun D. M., Mishchuk Ya. R.t Kondratyuk I. V., Zliel­ tovsky M. V. I n t r a m o l e c u l a r c o o p e r a t i v e h y d r o g e n b o n d s in n u c l e o t i d e b a s e s / / D o p o v i d i U k r . N a t . A c a d . S c i . — 1 9 9 6 . — N 8 . — P . 1 4 1 — 1 4 4 . 369 MlSHCl-Шк Ya. R., HOVORUN D U. 19. Govorun D. At., Danchuk V. D., Mishchuk Ya. R. et al A M I ca l cu la t ion of t h e n u c l e i c a c i d b a s e s s t ruc ture a n d v ibrat ional spec tra / / J. Мої . S t r u c t . — 1 9 9 2 . — 2 6 7 , N 1 . — P . 9 9 — 1 0 3 . 2 0 . Бурейко С. Ф.у Октябрьский В. Л. И с с л е д о в а н и е к и н е т и к и р е а к ц и й п е р е н о с а п р о т о н а в р а с т в о р а х м е т о д о м о с т а н о в л е н н о й с т р у и / / К и н е т и к а и к а т а л и з . — 1 9 8 6 . — 2 7 , № 3 . - С . 5 6 5 — 5 6 9 . 2 1 . Бурей ко С. Ф., Голубев И. С , Пиклая К., Маттинен Й. О б р а з о в а н и е б и ф у р к а т п о й в о д о р о д н о й с в я з и в к о м п л е к с а х д и о р т о з а м е ш о н н ы х ф е н о л о в в р а с т в о р е / / Ж у р н . с т р у к т у р , х и м и и . — 1 9 9 1 . — 3 2 , № 1 , — С . 8 7 — 9 2 . 2 2 . Govorun D. М., Danchuk V. D., Mishchuk Ya. R. ei al A b o u t the n o n p l a n a r i t y a n d d i p o l e n o n s t a b i l i t y of c a n o n i c a l n u c l e o t i d e b a s e s m e t h y l a t e d o n the g l y c o s i d e n i t r o g e n / / D o p o v i d i U k r . Nat . A c a d . S c i . — 1 9 9 5 . — N 6 . — P . 1 1 7 — 1 1 9 . 2 3 . Komaza J., Szafenicz K.. Leszczinsky J. D o e s t h e m e t h y l g r o u p form a h y d r o g e n b o n d ? Ab initio p o s t - H a r t r e e - F o c k s t u d y on e t h a n e - h y d r o g e n c y a n i d e c o m p l e x / / C h e m . P h y s . L e t t s . — 1 9 9 8 . - 2 8 5 , N 3 . - - P . 4 4 9 — 4 5 4 ^ 2 4 . Kuchler E., Derkosch J. I n f r a r o t - s p e k t r o s k o p i s c h e untersu c h u n g d e r a&soziation v o n n u c l e o s i d - d e r i v a l i v e n in l o sung: n a c h w e i s d e r b i l d u n g d u r c h w a s s e r s t o f f b r u c k e n g e b u n d e n e r b a s e n p a a r e II Z. N a t u r f o r s c h u n g . — 1 9 6 6 . — 2 1 6 , N 3 . — S. 2 0 9 — 2 1 6 . 2 5 . Young R., Kallenbach N. R. S e c o n d a r y s t ruc ture of po ly - ur idy l i c a c i d . N o n - c l a s s i c a l h y d r o g e n b o n d i n g a n d t h e funct ion of the r i b o s e 2 ' - h y d r o x y l g r o u p / / J. Мої . B io l . — 1 9 7 8 . — 1 2 6 . N 3 . — P . 4 6 7 — 4 7 9 . 2 6 . Follman M., Pfeil R., Witze H. P y r i m i d i n e n u c l e o s i d e s in so lu t ion . A s t u d y of i n t r a m o l e c u l a r f o r c e s b y p r o t o n m a g n e t i c r e s o n a n c e s p e c t r o s c o p y / / E u r . J. B i o c h e m . — 1 9 7 7 . — 7 7 N 3 . — P . 4 5 1 — 4 6 1 . 2 7 . Jeffrey G. А.у Maluszynska #., Mitra J. H y d r o g e n b o n d i n g in n u c l e o s i d e s a n d n u c l e o t i d e s / / Int . J. B io l . M a e r o m o l . — 7 . N 2 — P . 3 3 6 — 3 4 8 . 2 8 . Jeffrey G. A., Saenger W. H y d r o g e n b o n d i n g in b io log ica l s y s t e m s . — B e r l i n : S p r i n g e r , 1 9 9 4 . — 5 6 9 p. 2 9 . Samijlenko S. P.} Alexeeva I. V., Pal'chykivs'ka L. G. et al. Structural p e c u l i a r i t i e s of 6 a z a C y d a n d its der ivat ives : P M R a n d IR s p e c t r o s c o p y d a t a / / B i o p o l y m e r s a n d Ce l l . — 1 9 9 7 . — 1 3 , N 6 . — P . 4 0 1 — 4 1 0 . 3 0 . Ъропег J., Hobza P.f Leszczinski J. I n t e r a c t i o n s of D N A b a s e s a n d t h e s t ruc ture of D N A . A n o n e m p i r i c a l ab initio s t u d y with i n c l u s i o n of e l e c t r o n c o r r e l a t i o n / / C o m p u t a t i o n a l C h e m i s t r y . R e v i e w of current t r e n d s / E d . J. L e s z c z y n s k i . - - S i n g a p o r e ; L o n d o n : W o r l d S c i . , 1 9 9 6 . — V o l . 1 . — P . 271 p. 3 1 . Hovorun D. M.t Mishchuk Ya. R., Kondratyuk I. V. T o p o l o g i ­ cal p r o p e r t i e s of h y p e r s u r f a c e of potent ia l e n e r g y of c a n o n i c a l n u c l e o t i d e b a s e s / / B i o p o l y m e r s a n d C e l l . - - 1 9 9 6 . — 1 2 , N 5 . — P . 1 3 — 1 7 . 3 2 . Sponer J., Leszczynski J., Hobza P. H y d r o g e n b o n d i n g a n d s t a c k i n g of D N A b a s e s : a r e v i e w of q u a n t u m - c h e m i c a l ab initio s t u d i e s / / J. B i o m o l . Struct , a n d D y n a r n . - - 1 9 9 6 . — 1 4 , N 1 .— P . 1 1 7 — 1 3 5 . 3 3 . Levitt M., Warshel A. E x t r e m e c o n f o r m a t i o n a l f lexibi l i ty of the f u r a n o s e r ing in D N A a n d R N A III. A m e r . C h e m . S o c . — 1 9 7 8 . - - 1 0 0 , N 9. P . 2 6 0 7 — 2 6 1 3 . 3 4 . Hovorun D. M. A b o u t the micros tructura l na ture of l inear D N A c u r v a t u r e / / D o p o v i d i U k r . N a t . A c a d . Sc i . — 1 9 9 8 . — N 5 . — i n p r e s s . 3 5 . Bolton P. //., Kearns D R. H y d r o g e n b o n d i n g of the 2 ' O H in R N A / / B i o c h i m . et b i o p h y s . a c t a . — 1 9 7 8 . — 5 1 7 , N 2 . — P. 3 2 9 — 3 3 7 . 3 6 . Rabczenko A., Shugar D. H y d r o g e n b o n d i n g s c h e m e involv ing r i b o s e 2 ' - h y d r o x y l s in p o l y r i b o u r i d y l i c ac id / / Acta b i o c h i m . p o l . - 1 9 7 2 . - - 1 9 , N 1 . — P . 8 9 — 9 1 . R e c e i v e d 2 5 . 0 5 . 9 8 370 http://pol.-1972.--19