On the representation of a number as a sum of the k-th powers in an arithmetic progression
In this paper we obtain the asymptotic formula for a natural n ≤ x which representate as a sum of two non-negative k-th powers in an arithmetic progression.
Gespeichert in:
| Datum: | 2003 |
|---|---|
| 1. Verfasser: | Prosyanyuk, N.S. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2003
|
| Schriftenreihe: | Algebra and Discrete Mathematics |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/155714 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On the representation of a number as a sum of the k-th powers in an arithmetic progression / N.S. Prosyanyuk // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 2. — С. 87–92. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On the representation of a number as a sum of the \(k\)-th powers in an arithmetic progression
von: Prosyanyuk, N. S.
Veröffentlicht: (2018) -
Finite and infinite arithmetic sums of sets of complex numbers
von: V. M. Kovalenko
Veröffentlicht: (2014) -
Arithmetic of fuzzy numbers
von: O. O. Provotar
Veröffentlicht: (2017) -
Norm of Gaussian integers in arithmetical progressions and narrow sectors
von: Varbanets, S., et al.
Veröffentlicht: (2020) -
On the Average Value of a Generalized Pillai Function over ℤ|i| in the Arithmetic Progression
von: P. D. Varbanets, et al.
Veröffentlicht: (2013)