Rad-supplements in injective modules
We introduce and study the notion of Rad-s-injective modules (i.e. modules which are Rad-supplements in the irinjective hulls). We compare this notion with another generalization of injective modules. We show that the class of Rad-s-injective modules is closed under finite direct sums. We characteri...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2016 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2016
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/155737 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Rad-supplements in injective modules / E. Buyukasik, R. Tribak // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 171-183. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We introduce and study the notion of Rad-s-injective modules (i.e. modules which are Rad-supplements in the irinjective hulls). We compare this notion with another generalization of injective modules. We show that the class of Rad-s-injective modules is closed under finite direct sums. We characterize Rad-s-injective modules over several type of rings, including semilocalrings, left hereditary rings and left Harada rings.
|
|---|---|
| ISSN: | 1726-3255 |