Finite groups admitting a dihedral group of automorphisms
Let D=⟨α,β⟩ be a dihedral group generated by the involutions α and β and let F=⟨αβ⟩. Suppose that D acts on a finite group G by automorphisms in such a way that CG(F)=1. In the present paper we prove that the nilpotent length of the group G is equal to the maximum of the nilpotent lengths of the sub...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2017 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/156017 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Finite groups admitting a dihedral group of automorphisms / G. Ercan, İ.Ş. Güloğlu // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 223-229. — Бібліогр.: 17 назв. — англ. |