Finite groups admitting a dihedral group of automorphisms
Let D=⟨α,β⟩ be a dihedral group generated by the involutions α and β and let F=⟨αβ⟩. Suppose that D acts on a finite group G by automorphisms in such a way that CG(F)=1. In the present paper we prove that the nilpotent length of the group G is equal to the maximum of the nilpotent lengths of the sub...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2017 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2017
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/156017 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Finite groups admitting a dihedral group of automorphisms / G. Ercan, İ.Ş. Güloğlu // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 223-229. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156017 |
|---|---|
| record_format |
dspace |
| spelling |
Ercan, G. Güloğlu, İ.Ş. 2019-06-17T18:52:50Z 2019-06-17T18:52:50Z 2017 Finite groups admitting a dihedral group of automorphisms / G. Ercan, İ.Ş. Güloğlu // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 223-229. — Бібліогр.: 17 назв. — англ. 1726-3255 2010 MSC:20D10, 20D15, 20D45. https://nasplib.isofts.kiev.ua/handle/123456789/156017 Let D=⟨α,β⟩ be a dihedral group generated by the involutions α and β and let F=⟨αβ⟩. Suppose that D acts on a finite group G by automorphisms in such a way that CG(F)=1. In the present paper we prove that the nilpotent length of the group G is equal to the maximum of the nilpotent lengths of the subgroups CG(α) and CG(β). This work has been supported by the Research Project TÜBİTAK 114F223. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Finite groups admitting a dihedral group of automorphisms Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Finite groups admitting a dihedral group of automorphisms |
| spellingShingle |
Finite groups admitting a dihedral group of automorphisms Ercan, G. Güloğlu, İ.Ş. |
| title_short |
Finite groups admitting a dihedral group of automorphisms |
| title_full |
Finite groups admitting a dihedral group of automorphisms |
| title_fullStr |
Finite groups admitting a dihedral group of automorphisms |
| title_full_unstemmed |
Finite groups admitting a dihedral group of automorphisms |
| title_sort |
finite groups admitting a dihedral group of automorphisms |
| author |
Ercan, G. Güloğlu, İ.Ş. |
| author_facet |
Ercan, G. Güloğlu, İ.Ş. |
| publishDate |
2017 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let D=⟨α,β⟩ be a dihedral group generated by the involutions α and β and let F=⟨αβ⟩. Suppose that D acts on a finite group G by automorphisms in such a way that CG(F)=1. In the present paper we prove that the nilpotent length of the group G is equal to the maximum of the nilpotent lengths of the subgroups CG(α) and CG(β).
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156017 |
| citation_txt |
Finite groups admitting a dihedral group of automorphisms / G. Ercan, İ.Ş. Güloğlu // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 223-229. — Бібліогр.: 17 назв. — англ. |
| work_keys_str_mv |
AT ercang finitegroupsadmittingadihedralgroupofautomorphisms AT gulogluis finitegroupsadmittingadihedralgroupofautomorphisms |
| first_indexed |
2025-12-07T18:22:25Z |
| last_indexed |
2025-12-07T18:22:25Z |
| _version_ |
1850874785309917184 |