Homology modeling of structure of NH₂-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase

Mammalian tyrosyl-tRNA synthetase (TyrRS) is composed of two structural modules: the NH2-terminal catalytic core and cytokine-like COOH-terminal module. In order to elucidate the structural bases for the N-module functions we have used the computational prediction of its three-dimensional (3D) struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2002
Hauptverfasser: Odynets, K.A., Bazylevskyi, O.E., Kornelyuk, A.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут молекулярної біології і генетики НАН України 2002
Schriftenreihe:Біополімери і клітина
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/156315
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Homology modeling of structure of NH2-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase / K.A. Odynets, O.E. Bazylevskyi, A.I. Kornelyuk // Вiopolymers and Cell. — 2002. — Т. 18, № 6. — С. 547-550. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156315
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1563152025-02-09T22:56:30Z Homology modeling of structure of NH₂-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase Моделювання загомологією структури NH₂-кінцевого модуля тирозил-тРНК синтетази ссавців (Bos taurus) Моделирование по гомологии структуры NH₂-концевого модуля тирозил-тРНК синтетазы млекопетающих (Bos taurus) Odynets, K.A. Bazylevskyi, O.E. Kornelyuk, A.I. Короткі повідомлення Mammalian tyrosyl-tRNA synthetase (TyrRS) is composed of two structural modules: the NH2-terminal catalytic core and cytokine-like COOH-terminal module. In order to elucidate the structural bases for the N-module functions we have used the computational prediction of its three-dimensional (3D) structure by comparative modeling approach. A model of the bovine TyrRS N-module represents the Rossmann nucleotide-binding fold (RF) which is linked to the α-helical domain (αHD). The RF domain forms a single β-sheet containing 5 parallel and one attached antiparallel β-strands surrounded by α-helices. The connective polypeptide, CP1, inserted between β3- and β4-strands of the RF domain is perturbed from the domain core. Comparative analysis of this multiple sequence alignment of known TyrRSs and the obtained model structure reveals the conservative surface elements, which could potentially form the tRNATyr-binding surface. This putative surface includes some exposed amino acid residues of CP1, e. g. essential Lys146 and Lys147 residues, which were identified earlier by site-directed mutagenesis. Тирозил-тРНК синтетаза ссавців (TyrRS) складається з двох структурних модулів: каталітичного NH2-кінцевого кора та цитокінподібного COOH-кінцевого модуля. Для вивчення структурних основ функціонування каталітичного N-модуля Здійснено комп' ютерне моделювання його просторової (3D) структури. Модель структури N-модуля TyrRS являє собою нуклеотидзв'язуючий фолд – згортку Россмана (RF), до якого приєднаний α-спіральний домен (αHD). RF-домен формує β-згортку, яка містить п'ять паралельних та один антипаралельний β-стренди, оточені α-спіралями. З'єднувальний поліпептид, CPі, розміщений між β3- та β4-стрендами RF-домену. Аналіз моделі виявив консервативні елементи, які можуть формувати область зв'язування гомологічної tRNATyr Ця область містить деякі амінокислотні залишки CP1, наприклад, функціонально важливі Lys146 та Lys147, які були ідентифіковані раніиіе методом сайт-спрямованого мутагенезу. Тирозил-тРНК синтетаза млекопитающих (TyrRS) состоит из двух структурных модулей: каталитического NH2-концевого кора и цитокинподобного COOH-концевого модуля. Для изучения структурных основ функционирования каталитического N-модуля проведено компьютерное моделирование его пространственной (3D) структуры. Модель структуры N- модуля TyrRS представляет собой нуклеотидсвязывающий фолд – свертку Россмана (RF), к которому присоединен α-спиральний домен (αHD). RF-домен формирует β-лист, содержащий пять параллельных и один антипараллельный β-стрэнды, окруженные α-спиралями. Соединительный полипептид, CP1, размещен между β3- и β4-cmpендами RF-домена. Анализ модели выявил консервативные элементы, способные формировать область связывания гомологичной tRNATyr . Эта область включает некоторые аминокислотные остатки CP1, например, функционально важные Lys146 и Lys147, которые были идентифицированы ранее методом сайт-направленного мутагенеза 2002 Article Homology modeling of structure of NH2-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase / K.A. Odynets, O.E. Bazylevskyi, A.I. Kornelyuk // Вiopolymers and Cell. — 2002. — Т. 18, № 6. — С. 547-550. — Бібліогр.: 18 назв. — англ. 0233-7657 DOI:http://dx.doi.org/10.7124/bc.000634 https://nasplib.isofts.kiev.ua/handle/123456789/156315 577.152.6:577.332 en Біополімери і клітина application/pdf Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Короткі повідомлення
Короткі повідомлення
spellingShingle Короткі повідомлення
Короткі повідомлення
Odynets, K.A.
Bazylevskyi, O.E.
Kornelyuk, A.I.
Homology modeling of structure of NH₂-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase
Біополімери і клітина
description Mammalian tyrosyl-tRNA synthetase (TyrRS) is composed of two structural modules: the NH2-terminal catalytic core and cytokine-like COOH-terminal module. In order to elucidate the structural bases for the N-module functions we have used the computational prediction of its three-dimensional (3D) structure by comparative modeling approach. A model of the bovine TyrRS N-module represents the Rossmann nucleotide-binding fold (RF) which is linked to the α-helical domain (αHD). The RF domain forms a single β-sheet containing 5 parallel and one attached antiparallel β-strands surrounded by α-helices. The connective polypeptide, CP1, inserted between β3- and β4-strands of the RF domain is perturbed from the domain core. Comparative analysis of this multiple sequence alignment of known TyrRSs and the obtained model structure reveals the conservative surface elements, which could potentially form the tRNATyr-binding surface. This putative surface includes some exposed amino acid residues of CP1, e. g. essential Lys146 and Lys147 residues, which were identified earlier by site-directed mutagenesis.
format Article
author Odynets, K.A.
Bazylevskyi, O.E.
Kornelyuk, A.I.
author_facet Odynets, K.A.
Bazylevskyi, O.E.
Kornelyuk, A.I.
author_sort Odynets, K.A.
title Homology modeling of structure of NH₂-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase
title_short Homology modeling of structure of NH₂-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase
title_full Homology modeling of structure of NH₂-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase
title_fullStr Homology modeling of structure of NH₂-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase
title_full_unstemmed Homology modeling of structure of NH₂-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase
title_sort homology modeling of structure of nh₂-terminal module of mammalian (bos taurus) tyrosyl-trna synthetase
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2002
topic_facet Короткі повідомлення
url https://nasplib.isofts.kiev.ua/handle/123456789/156315
citation_txt Homology modeling of structure of NH2-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase / K.A. Odynets, O.E. Bazylevskyi, A.I. Kornelyuk // Вiopolymers and Cell. — 2002. — Т. 18, № 6. — С. 547-550. — Бібліогр.: 18 назв. — англ.
series Біополімери і клітина
work_keys_str_mv AT odynetska homologymodelingofstructureofnh2terminalmoduleofmammalianbostaurustyrosyltrnasynthetase
AT bazylevskyioe homologymodelingofstructureofnh2terminalmoduleofmammalianbostaurustyrosyltrnasynthetase
AT kornelyukai homologymodelingofstructureofnh2terminalmoduleofmammalianbostaurustyrosyltrnasynthetase
AT odynetska modelûvannâzagomologíêûstrukturinh2kíncevogomodulâtiroziltrnksintetazissavcívbostaurus
AT bazylevskyioe modelûvannâzagomologíêûstrukturinh2kíncevogomodulâtiroziltrnksintetazissavcívbostaurus
AT kornelyukai modelûvannâzagomologíêûstrukturinh2kíncevogomodulâtiroziltrnksintetazissavcívbostaurus
AT odynetska modelirovaniepogomologiistrukturynh2koncevogomodulâtiroziltrnksintetazymlekopetaûŝihbostaurus
AT bazylevskyioe modelirovaniepogomologiistrukturynh2koncevogomodulâtiroziltrnksintetazymlekopetaûŝihbostaurus
AT kornelyukai modelirovaniepogomologiistrukturynh2koncevogomodulâtiroziltrnksintetazymlekopetaûŝihbostaurus
first_indexed 2025-12-01T14:20:59Z
last_indexed 2025-12-01T14:20:59Z
_version_ 1850316014308294656
fulltext ISSN 0233-7657. Біополімери і клітина. 2002. Т. 18. № 6 Homology modeling of structure of NH2-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase K. A. O d y n e t s , О . E. Bazy levsky i , A· I . K o r n e l y u k Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine 150 Acad. Zabolothny Street, Kyiv, 03143, Ukraine E-mail: kornelyuk@imbg.org.ua Mammalian tyrosyl-tRNA synthetase (TyrRS) is composed of two structural modules: the NH2-terminal catalytic core and cytokine-like COOH-terminal module. In order to elucidate the structural bases for the N-module functions we have used the computational prediction of its three-dimensional (3D) structure by comparative modeling approach, A model of the bovine TyrRS N-module represents the Rossmann nucleotide-binding fold (RF) which is linked to the α-helical domain (aHD). The RF domain forms a single β-sheet containing δ parallel and one attached antiparallel β-strands surrounded by a-helices. The connective polypeptide, CPl, inserted between β3- and β4-strands of the RF domain is perturbed from the domain core. Comparative analysis of the multiple sequence alignment of known TyrRSs and the obtained model structure reveals the conservative surface elements, which could potentially form the tRNATyr- binding surface. This putative surface includes some exposed amino acid residues of CPI, e. g. essential LysJ46 and Lysl47 residues, which were identified earlier by site-directed mutagenesis. Introduction. Tyrosyl-tRNA synthetase (TyrRS, ty- rosine — tRNA ligase, E. C. 6.1.1.1) catalyzes highly specific attachment of L-tyrosine to cognate tRNATyr [1 ]. In mammalia (particularly in bovine, Bos taurus) two functionally active forms of this enzyme have been discovered. During intracellular proteolysis as well as after apoptosis-induced secretion, the C- module may be cleaved from the «minimal» TyrRS (N-module) within protease-sensitive linking segment [4—7]. In bovine TyrRS, the N-module is composed of about 345 amino acid residues (aa) and consists of a class I-defining Rossmann fold (RF) domain (about 235 aa) and a second anticodon-recognition α-helical domain (aHD, about 109 aa) [8 ]. As an approach to elucidate the structural bases of N-module functions we have used the computa- tional prediction of its three-dimensional (3D) struc- ture by the comparative modeling approach. 3D structures of three eubacterial TyrRSs and one tryp- tophanyl-tRNA synthetase (TrpRS), determined ex- perimentally [9—12], were used as structural tem- plates for the homology modeling procedure. © K. A. O D Y N E T S , Ο. Ε. B AZYLE VS K YI, A. I. KORNELYUK, 2 0 0 2 Materials and Methods. Sequence of BtTyrRS was deposited to GenBank/GenPept and Swiss-Prot databases (accession numbers AAC82467, Q29465). Search for homologous sequences was performed with iterative PSI-BLAST service (this and other programs and servers are described in our review [13]). TyrRS of 15 eukaryotic organisms (Bos taurus, Homo sapi- ens^ Mus musculus, Fugu rubripes, Drosophila mela- Itogastery Anopheles gambiae, Caenorhabditis elegans, Pneumocystis carinii, Saccharomyces cerevisiae, Schi- zosaccharomyees pombe, Encephalitozoon Cunieuliy Candida albicans, Plasmodium falciparum, Arabi- dopsis thaliana and Nicotiana tabacum) and 17 archaebacteria were analyzed. Multiple sequence alig- nment was carried out with Clustal W and secondary structure elements were predicted with the PHD and the multiprediction the NPS@ server. The coordinates files were obtained from PDB for crystallographic structures of three eubacterial TyrRSs: Thermus ther- mophilus (PDB ID codes 1H3E, 1H3F); Bacillus (Geobacillus) stearothermophilus (2 T S1, 3 T S1, 4TS1); Staphylococcus aureus (1JII, 1JIJ, 1JIK, IJIL); and tryptophanyl-tRNA synthetase from B. stearothermophilus (1D2R, 1I6K, 1I6L, 1I6M). Thre- 547 mailto:kornelyuk@imbg.org.ua O D V N E T S Κ. Α., BAZYLEVSKYI О. Б., KORNELYUK A. I. ading servers Bioinbgu and FUGUE [14] were used to search for the similar structures» The complete N-module model was built using Modeller 6.2 pro- gram suite [15]. Total 20 initial models from Mo- deller were built and optimized using «refine-5» protocol with default parameters for optimization procedures. Energy calculation of the models has been performed using Energy option of Modeller. Secondary structure assignment was done using DSSP and STRIDE algorithms. Search for structurally related domains and their superimposition (both in pair and multiple structure alignment modes) were carried out using CE and VAST. The SCOP server 1.61 release was used to find other similar structures from related families and superfamilies. Quality of the optimized models was verified using Evall23D, ANO- LEA and ERRAT servers and the best model was chosen for the subsequent optimization. The models optimization with a simulated molecular dynamics (MD) approach was carried out with Gromacs 3.1.4 program [16]. The model structures were placed into a periodic rectangular box, filled with SPC water layer. The minimal d is tances between the prote in and boundaries of the box were 0.7 nm. Energy minimi- zation was performed on the proteins using a ste- epest-descent algorithm with 2 fs integration time step and a tolerance of 0.01 kJ · mof1 · nm""1 during 10 ps. Position restrained MD was done to distribute water molecules, and actual MD was simulated during 1 ns. The temperature was controlled by coupling to an external bath of 300 K with coupling time constant of 10 fs. The GROMACS force field was used in this work. Solvent accessible surface areas of the proteins were calculated using GetArea 1.1 server. Pockets and cavities search and analysis was performed using castP. Distribution of surface conservative residues was done using ConSurf 2.0. Structure visualization and analysis were performed with Deep View (Swiss- PDB Viewer) 3.7b2 and Protein Explorer 1.299. Results and Discussion. The iterative PSI-BLAST search for the M1-P344 segment of ^iTyrRS has found 32 homologous sequences of the N-modules from other eukaryotic and archaebacterial TyrRSs, and about 30 sequences of TyrRSs and TrpRSs homologous to its aHD domain. The N-module sequ- ences can be divided into five parts according to their distinct substructures: the N-subdomain (residues M1-E33); the first half of Rossmann fold (R34- Kl 19); CPl insertion (G120-L177); the second half of RF with junked «KMSSS» catalytic loop (K178- L235); and aHD domain (D236-P344). The highest local homology between ^ T y r R S and 77TyrRS is in the N-subdomain and within L-tyrosine binding H3 α-helix and «KMSSS» loop. We have modeled the £/TyrRS N-module, con- taining 340 aa residues (L5-P344) with molecular mass of 38.5 kDa. The 3D structure of the most similar (69 identical residues for M1-P344 region, 22.5 % identity) T. thermophilus TyrRS (PDB code 1H3E), determined with 2.9 A resolution, was used as the best template structure. The target/template pair sequence alignment has been extracted from multiple sequence alignment and corrected manually to optimize the positions of insertions. The locali- zation of insertions/deletions was also deduced from inspection of the template secondary structure ele- ments. As the most significant errors in models are often due to misalignment of target and template sequences, we performed careful manual editing of the alignment, as well as the iterative realignment and model building. There are eleven indels in the BfTyrRS N-module in comparison with the template, and their exact locations may vary slightly. There are only four short insertions within the RF domain of BtTyrRS (106ESIG, Y129, 148AG and E227) and seven short insertions in the template 7YTyrRS structure. Unlike the RF domain, a weak sequence homo- logy between the aHD domains of eu- and prokaryo- tic TyrRSs reveals their significant divergence after the separation of eukaryotes and archaebacteria from eubacteria. Different threading methods allowed us to select the B. stearothermophilus TrpRS structure (PDB code 1D2R, chain A) as an alternative template for the £/TyrRS aHD modeling because of its higher structural similarity. For example, sequence-structure search with Bioinbgu server predicts BsTrpRS as better template than ^ T y r R S (Z-scores are 39.0 and 4.3 respectively). That sequence-structure alignment gives only two insertions (258NGVLAFIRHVL and 302EV) within the bovine sequence compared to the ^ T r p R S aHD domain. We have used the BsTrpRS aHD domain (K192-D297 region) as an alternative structure template for the aHD structure modeling. The initial models of the aHD domain were built with the Modeller program and connected with the RF domain into complete two-domain N-module structure by overlapping their common KMSSS-loop segments. The best from 20 initial models were optimized in water environment using restricted molecular dyna- mics simulation techniques with the Gromacs 3.1.4 program. To test the validity of the initial and optimized models, a combination of evaluation criteria was used to discriminate between the correct and incorrect models. For the models verification such criteria were used as interatomic clashes, stereochemical properties 548 HOMOLOGY MODELING OF S T R U C T U R E OF NH2-TERMINAL MODULE (bond lengths, angles and dihedral angles, peptide bonds planarity, Ca tetrahedral distortion etc.), po- sition of residues in the Ramachandran plot, root- mean-square deviation (RMSD) for Ca-Ca atoms of model/template structure pairs. Using several evalua- tion servers we analyzed the following structures: 1) the templates (1H3E and 1D2R); 2) initial and refined models of the N-module obtained from Mo- deller; and 3) the optimized best models obtained by molecular dynamics simulation using the Gromacs program. ANOLEA server performs energy cal- culations on a protein chain, evaluating the non-local environment of each heavy atom in the molecule. The energy of each pairwise interaction in this non-local environment is taken from a distance-dependent kno- wledge-based mean force potential. Server ERRAT analyzes the statistics of non-bonded interactions between different atom types, and a single output plot gives the value of the error function vs. position of a 9-residue sliding window. The error values give confidence limits that are extremely useful in making decisions about model reliability. Regions of candidate protein structures that are mistraced or misregistered can then be identified by analysis of the pattern of nonbonded interactions from each window. The best model obtained after MD simulation represents a two-domain protein with solvent acces- sible surface area 16.3 A2 and 41.7 A3 volume (Figure). The RMSD between the model and template structures is 1.65 A for 756 backbone atoms. A number of analyses were carried out to predict the elements responsible for tRNA binding ability of N-module. The RF and aHD domains are arranged into the N-module forming common tRNA binding surface, which is located on the same side for all dimeric «minimal» TyrRSs and TrpRSs. The compa- rative analysis of multiple sequence alignment of known TyrRSs and the obtained model structure reveals the conservative surface elements, which could potentially form the tRNATyr-binding surface. This putative tRNA-contacting region includes CPl (resi- dues T121-L177) inserted into RF domain. We have analyzed the solvent exposed amino acid residues. The most exposed residues in the CPl of Z?jTyrRS N-module are: D122, L125, K127, E128, L131, Y134, R135, S137, S138, T146, Q142, H143, K146, K147, K154, Q155 and V156. The secondary structure elements were defined with the DSSP and STRIDE programs. The RF domain of the BtTyrRS N-module (residues Ml- L235) forms a single β-sheet containing 5 parallel and one attached antiparallel ^-strands arrange as (βΟ)- β5-β4-βΙ-β2-β3 and surrounded by α-helices. The /?-sheet adopts additional structural elements. The RF Accessible surface view of the model structure for N-module of bovine tyrosyl-tRNA synthetase. The N-module is shown from the side of its active site cavity, where catalytic KMSSS loop corresponds to conservative dark-colored amino acid residues. Two domains of N-module are the Rossmann fold (left) and the α-helical domain (right). Colors of surface residues correspond to their conservativity obtained from the multiple sequence alignment analysis domain includes the additional N-terminal segment of the first 33 residues containing α-βΟ-β element, which is characteristic of all known TyrRSs but is not homologous to TrpRSs and other class I synthetases. The characteristic CPl insertion (residues G120- L177) is located between β3- and /34-strands and perturbs from the core of the RF domain. A detailed understanding of the protein function requires the identification of some conserved amino acid residues at the protein surface, which may be responsible for the protein function. The ConSurf server was used to identify such important regions, based on the phylogenetic relations between homo- logous proteins from their multiple sequence align- ment. Conservativity of the exposed amino acid resi- dues of the eukaryotic-type N-module is represented on Figure as color-coded surface of the ZOTyrRS N-module. The majority of exposed (more than 50 %) and strongly conservative residues are loca- lized in and around the described surface region. The functional role of lysine residues K146 and K147 located in CPl of ^ T y r R S has been previously studied by site-directed mutagenesis [17]. The re- placement of both residues with Asn and Tyr, respec- tively, as well as the substitution of K147 alone, caused the inactivation of mutant TyrRS in the tRNATyr aminoacylation reaction. In our model both Lys residues are exposed and may form contacts with tRNATyr. Acknowledgements. This work was supported by NATO Linkage grant HTECG.LG 974684 and NATO Computer networking supplement No. 976022 to NA- TO linkage grant. Note added in proof. When this article was 549 O D Y N E T S Κ. Α. , BAZYLEVSKYI О. Б", KORNELYUK A. I. submitted, the article of Yang et aL, (2002) [18] was published where crystallographic structure of a human «minimal» TyrRS was described with resolution 1.18 A. K О. Одинець, О. Є. Базилевський, О. І. Корнелюк Моделювання за гомологією структури ГШ2-кінцевого модуля тирозил-тРНК синтетази ссавців (Bos taurus) Резюме Тирозил-тРНК синтетаза ссавців (TyrRS) складається з двох структурних модулів: каталітичного NH2-кінцевого кора та цитокінподібного COOH-кінцевого модуля. Для вивчення стру- ктурних основ функціонування каталітичного N-модуля Здій- снено комп' ютерне моделювання його просторової (3D) стру- ктури. Модель структури N-модуля TyrRS являє собою нукле- отидзв'язуючий фолд — згортку Россмана (RF)t до якого при- єднаний α-спіральний домен (aHD). RF-домен формує β-згор- тку, яка містить п'ять паралельних та один антипаралель- ний β-стренди, оточені α-спіралями. З'єднувальний поліпеп- тид, CPі, розміщений між β3- та β4-cmpeндaмu RF-домену. Аналіз моделі виявив консервативні елементи, які ηожуть формувати область зв'язування гомологічної tRNA 3^ Ця область містить деякі амінокислотні залишки CPlt наприк- лад, функціонально важливі LysI46 та LysJ47, які були іден- тифіковані раніиіе методом сайт-спрямованого мутагенезу. К. А. Одынец, А. Е. Базилевский, А. И. Корнелюк Моделирование по гомологии структуры NH2-концевого модуля тирозил-тРНК синтетазы млекопитающих (Bos taurus) Резюме Тирозил-тРНК синтетаза млекопитающих (TyrRS) состоит из двух структурных модулей: каталитического NH2-концево- го кора и цитокинподобного COOH-концевого модуля. Для изучения структурных основ функционирования каталитиче- ского N-модуля проведено компьютерное моделирование его пространственной (3D) структуры. Модель структуры N- модуля TyrRS представляет собой нуклеотидсвязывающий фолд — свертку Россмана (RF)t к которому присоединен а- спиральний домен (aHD). RF-домен формирует β-лист, содер- жащий пять параллельных и один антипараллельный β-стрэн- ды, окруженные а-спиралями. Соединительный полипептид, CP1, размещен между β3- и β4-cmpендами RF-домена. Анализ модели выявил консервативные элементы, способные форми- ровать область связывания гомологичной tRNA . Эта об- ласть включает некоторые аминокислотные остатки CP1, например, функционально важные Lys146 и Lys147, которые были идентифицированы ранее методом сайт-направленного мутагенеза REFERENCES 1. Schimmel P. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recog- nition of transfer RNAs / / Ann. Rev. Biochem.—1987.—56.— P. 125—158. 2. Kornelyuk A. I., Kurochkin I. V., Matsuka G. H. Tyrosyl- tRNA synthetase from beef liver. Purification and physics- chemical properties / / Мої. Biol. (Kiev).—1988.—22, N 1.— P. 176—186. 3. Kleeman Τ. A., Wei D., Simpson K L., First E. A. Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine / / J. Biol. Chem.—1997.—272, N 22.—P. 14420—14425. 4. Kornelyuk A. /., Tas M. P. R., Dybrovsky A., Murray C. Cytokine activity of the non- catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase / / Biopolimery і kletka (Kiev).—1999.—15, N 2.—P. 168—172. 5. Levanets О. V., Naidenov V. G., Odynets K A., Woodmaska M. /., Matsuka G. Kh, Kornelyuk A. I. Homology of C-terminal non-catalytic domain of mammalian tyrosyl-tRNA synthetase with cytokine EMAP II and non-catalytic domains of methionyl- and phenylalanyl-tRNA synthetases / / Biopo- limery і kletka (Kiev).—1997.—13, N 6.—P. 474—478. 6. Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase 11 Science.— 1999.—284, N 5411.—P. 147—151. 7. Wakasugi K, Schimmel P. Highly differentiated motifs respon- sible for two cytokine activities of a split human tRNA synthetase / / J. Biol. Chem.—1999.—274, N 33.—P. 23155— 23159. 8. Kornelyuk A. I. Structural and functional investigation of mammalian tyrosyl-tRNA synthetase / / Biopolimery і kletka (Kiev).—1998.—14, N 4.—P. 349—359. 9. Yaremchuk A., Kriklivyi L, Tukalo M., Cusack S. Class I tyrosyl-tRNA synthetase has a class II mode of tRNA recogni- tion U EMBO J.—2002.—21, N 14.—P. 3829—3840. 10. Brick P., Bhat Τ. N., Blow D. M. Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate / / J. Мої. Biol.—1989.—208, N 1.—P. 83—98. 11. Qiu X., Janson C. A., Smith W. W., Green S. M., McDevitt P., Johanson K, Carter P., Hibbs M., Lewis C., Chalker A., Fosberry A., Lalonde J., Berge J., Brown P., Houge-Frydrych C. S., Jarvest R. L. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors / / Protein Sc i . -2001 .—10, N 10.— P. 2008—2016. 12. Ilyin V. A., TempleB., Li G.-P., Vachette Y P., Carter C. W. JR. 2.9 A Crystal structure of ligand-free tryptophanyl-tRNA synthetase: domain movements fragment the adenine nucleotide binding site / / Protein Sci . -2000.—9, N 2.—P. 218—231. 13. Одинець К О. Корнелюк О. І. Методи аналізу і моделю- вання просторової структури білків / / Наук, записки Ha- УКМА. Природи, науки.—2001.—19.—С. 7—17. 14. Shi J., Blundell Т. L., Mizuguchi К. FUGUE: sequence-struc- ture homology recognition using environment-specific substitu- tion tables and structure-dependent gap penalties 11 J. Мої. Biol.—2001.—310, N 1.—P. 243—257. 15. Sanchez R., Sali A. Comparative protein structure modeling. Introduction and practical examples with modeller / / Methods Мої. Biol.—2000.—143.—P. 97—129. 16. Lindahl E., Hess B., van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis / / J . Мої. Model.—2001.—7.—P. 306—317. 17. Найденов В. Г., Bydмаска Μ. И., Корнелюк А. И. Мацука Г. X. Сайт-направленный мутагенез остатков лизина, лока- лизованных в соединительном пептиде нуклеотидсвязыва- ющего домена (свертки Россмана) тирозил-тРНК синте- тазы из печени быка / / Биополимеры и клетка.—2000.— 16, № 4.—С. 275—280. 18. Yang X. L., Skene R. J., McRee D. E., Schimmel P. Crystal structure of a human aminoacyl-tRNA synthetase cytokine / / Proc. Nat. Acad. Sci. USA.—2002.—99, N 243.—P. 15369— 15374. УДК 577.152.6:577.332 Надійшла до редакції 17.09.02 550