Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster
Soon after eclosion, epithelial cells of the Drosophila wing undergo a number of the processes due to a release of the neurohormone bursicon and its further binding to the GPCR Rickets, collectively referred to as wing maturation. Here we propose hypothetical models of the interaction between extrac...
Збережено в:
| Дата: | 2012 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут молекулярної біології і генетики НАН України
2012
|
| Назва видання: | Вiopolymers and Cell |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/156928 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster / O.O. Bilousov, V.L. Katanaev, I.A. Kozeretska // Вiopolymers and Cell. — 2012. — Т. 28, № 4. — С. 288-291. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156928 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1569282025-02-09T13:11:47Z Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster Miniature як гіпотетичний білок – регулятор сигнального каскаду Bursicon/Rickets у криловому епітелії Drosophila melanogaster Miniature как гипотетический белок – регулятор сигнального каскада Bursicon/Rickets в крыловом эпителии Drosophila melanogaster Bilousov, O.O. Katanaev, V.L. Kozeretska, I.A. Minireviews Soon after eclosion, epithelial cells of the Drosophila wing undergo a number of the processes due to a release of the neurohormone bursicon and its further binding to the GPCR Rickets, collectively referred to as wing maturation. Here we propose hypothetical models of the interaction between extracellular Miniature, and also Dusky, proteins and proteins responsible for triggering of the wing maturation processes in Drosophila melanogaster. Keywords: bursicon, Rickets, Miniature, Dusky, wing maturation. Відразу після вилуплення з пупарію в крилі дрозофіли відбувається низка процесів під загальною назвою матурація, які запускаються нейрогормоном бурсиконом та його рецептором Rickets. В огляді представлено гіпотетичні моделі взаємодії білків позаклітинного матриксу Miniature, а також Dusky, які є необхідними як на ранніх стадіях формування крила, так і після вилуплення мухи, з білками, відповідальними за запуск процесів матурації крила у D. melanogaster. Ключові словаs: бурсикон, Rickets, Miniature, Dusky, матурація крила. Сразу после вылупления из пупария в крыле дрозофилы происходит ряд процессов под общим названием матурация, запускаемых нейрогормоном бурсиконом и его рецептором Rickets. В обзоре представлены гипотетические модели взаимодействия белков внеклеточного матрикса Miniature, а также Dusky, необходимых как на ранних стадиях формирования крыла, так и после вылупления мухи, с белками, ответственными за запуск процесов матурации крыла у D. melanogaster. Ключевые слова: бурсикон, Rickets, Miniature, Dusky, матурация крыла. 2012 Article Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster / O.O. Bilousov, V.L. Katanaev, I.A. Kozeretska // Вiopolymers and Cell. — 2012. — Т. 28, № 4. — С. 288-291. — Бібліогр.: 22 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.000060 https://nasplib.isofts.kiev.ua/handle/123456789/156928 575.164 en Вiopolymers and Cell application/pdf Інститут молекулярної біології і генетики НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Minireviews Minireviews |
| spellingShingle |
Minireviews Minireviews Bilousov, O.O. Katanaev, V.L. Kozeretska, I.A. Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster Вiopolymers and Cell |
| description |
Soon after eclosion, epithelial cells of the Drosophila wing undergo a number of the processes due to a release of the neurohormone bursicon and its further binding to the GPCR Rickets, collectively referred to as wing maturation. Here we propose hypothetical models of the interaction between extracellular Miniature, and also Dusky, proteins and proteins responsible for triggering of the wing maturation processes in Drosophila melanogaster.
Keywords: bursicon, Rickets, Miniature, Dusky, wing maturation. |
| format |
Article |
| author |
Bilousov, O.O. Katanaev, V.L. Kozeretska, I.A. |
| author_facet |
Bilousov, O.O. Katanaev, V.L. Kozeretska, I.A. |
| author_sort |
Bilousov, O.O. |
| title |
Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster |
| title_short |
Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster |
| title_full |
Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster |
| title_fullStr |
Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster |
| title_full_unstemmed |
Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster |
| title_sort |
miniature as a hypothetical regulatory protein of the bursicon/rickets signaling cascade in the wing epithelia of drosophila melanogaster |
| publisher |
Інститут молекулярної біології і генетики НАН України |
| publishDate |
2012 |
| topic_facet |
Minireviews |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156928 |
| citation_txt |
Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster / O.O. Bilousov, V.L. Katanaev, I.A. Kozeretska // Вiopolymers and Cell. — 2012. — Т. 28, № 4. — С. 288-291. — Бібліогр.: 22 назв. — англ. |
| series |
Вiopolymers and Cell |
| work_keys_str_mv |
AT bilousovoo miniatureasahypotheticalregulatoryproteinofthebursiconricketssignalingcascadeinthewingepitheliaofdrosophilamelanogaster AT katanaevvl miniatureasahypotheticalregulatoryproteinofthebursiconricketssignalingcascadeinthewingepitheliaofdrosophilamelanogaster AT kozeretskaia miniatureasahypotheticalregulatoryproteinofthebursiconricketssignalingcascadeinthewingepitheliaofdrosophilamelanogaster AT bilousovoo miniatureâkgípotetičnijbílokregulâtorsignalʹnogokaskadubursiconricketsukrilovomuepítelíídrosophilamelanogaster AT katanaevvl miniatureâkgípotetičnijbílokregulâtorsignalʹnogokaskadubursiconricketsukrilovomuepítelíídrosophilamelanogaster AT kozeretskaia miniatureâkgípotetičnijbílokregulâtorsignalʹnogokaskadubursiconricketsukrilovomuepítelíídrosophilamelanogaster AT bilousovoo miniaturekakgipotetičeskijbelokregulâtorsignalʹnogokaskadabursiconricketsvkrylovomépiteliidrosophilamelanogaster AT katanaevvl miniaturekakgipotetičeskijbelokregulâtorsignalʹnogokaskadabursiconricketsvkrylovomépiteliidrosophilamelanogaster AT kozeretskaia miniaturekakgipotetičeskijbelokregulâtorsignalʹnogokaskadabursiconricketsvkrylovomépiteliidrosophilamelanogaster |
| first_indexed |
2025-11-26T01:43:09Z |
| last_indexed |
2025-11-26T01:43:09Z |
| _version_ |
1849815350908026880 |
| fulltext |
UDC 575.164
Miniature as a hypothetical regulatory protein of the
Bursicon/Rickets signaling cascade in the wing epithelia
of Drosophila melanogaster
O. O. Bilousov1, 3, V. L. Katanaev1, 2, I. A. Kozeretska3
1Department of Pharmacology and Toxicology, University of Lausanne
27, Bugnon Str., CH-1005 Lausanne, Switzerland
2Institute of Protein Research, Russian Academy of Sciences
Pushchino, Moscow Region, Russian Federation, 142290
3Educational and Scientific Center «Institute of Biology», National Taras Shevchenko University of Kyiv
64/13, Volodymyrska Str., Kyiv, Ukraine, 01601
iryna.kozeretska@gmail.com
Soon after eclosion, epithelial cells of the Drosophila wing undergo a number of the processes due to a release of
the neurohormone bursicon and its further binding to the GPCR Rickets, collectively referred to as wing matura-
tion. Here we propose hypothetical models of the interaction between extracellular Miniature, and also Dusky,
proteins and proteins responsible for triggering of the wing maturation processes in Drosophila melanogaster.
Keywords: bursicon, Rickets, Miniature, Dusky, wing maturation.
The wing of a newly emerged fly is a pale soft folded
structure. Shortly after fly eclosion from a pupal case the
neurohormone bursicon, synthesized in adult insect’s
brain at this stage of development and then released into
hemolymph, triggers a number of the processes in Dro-
sophila wing epithelial cells, which then lead to so-cal-
led wing maturation [1]. Apoptosis and epithelial-to-
mesenchymal transition (EMT), accompanied by the
cell debris wash-out from the wing cavity with a flow
of hemolymph (generated and promoted by pumping
contractions of bilateral «wing hearts», which are loca-
ted in the Drosophila thorax), are two pivotal acts, infal-
lible progress of which is crucial for successful matu-
ration of the Drosophila wing [2–4]. Fusion of the two
cuticule (dorsal and ventral) sheets, produced by under-
lying wing epithelial cells at the previous wing morpho-
genesis stages, theirs subsequent melanization and scle-
rotization are three final accords of this symphony or-
chestrated by the bursicon, which ends by the forma-
tion of the expanded and flattened, sturdy and flexible
flying organ of Drosophila melanogaster [1, 5].
The neurohormone bursicon, and its Rickets re-
ceptor. Bioactive bursicon has of molecular weight of
30 kDa and is composed of the two subunits: � (burs)
and � (pburs), which after cleavage of the 21-amino
acid signal sequence decrease to approximately 15 kDa
each. Both bursicon moieties have the specific three-di-
mensional structure common for cysteine knot proteins
(CKPs). It is a ring, formed by disulphide bonds establi-
shed between six cysteine residues in a certain manner,
two antiparallel �-strands (so-called fingers), formed
by three distinct domains, and an �-helical structure
(named heel). BURS and PBURS can form homo- and
heterodimers in the aqueous surrounding, due to the
hydrophobic properties of their residues and, normally,
bioactive bursicon is a heterodimer, but also homodi-
mers of �- and �-subunits can be found in vivo with still
yet unknown functions [1, 6, 7].
The CKP family contains vertebrate glycoprotein
hormones (e. g., anterior pituitary hormones follitropin,
lutropin and thyrotropin, and placental chorionic gona-
dotropin), growth factors (e. g., nerve growth factor,
transforming growth factor-beta (TGF-�) and platelet-
derived growth factor), mucins and bone morphogene-
tic protein antagonists.
ISSN 0233–7657. Biopolymers and Cell. 2012. Vol. 28. N 4. P. 288–291
288
� Institute of Molecular Biology and Genetics, NAS of Ukraine, 2012
289
It also necessary to say that homologs of Drosophi-
la bursicon monomers can be found in many arthro-
pods, mainly including species from insecta, crustacea
and arachnida, and also in the echinoderm Strongylo-
centrotus purpuratus (purple sea urchin) [1].
The bursicon receptor has been recently identified
and named Rickets. This protein belongs to a peculiar
subgroup (leucine-rich repeat-containing G-protein
coupled receptors – LGRs) of the great family of the G-
protein coupled receptors (GPCRs). Besides common
features of GPCRs, members of this subgroup have a
large N-terminal ectodomain involved in selective hor-
mone binding. In case of the Rickets receptor, 13–18
leucine-rich repeat amino acid motifs are present in its
ectodomain structure, what in turn brings this receptor
to a subtype B of the LGR subgroup [6, 7].
What we should know about Miniature. The pro-
tein encoded by the miniature gene belongs to a ZP-do-
main containing superfamily of the proteins. It means
that Miniature has rather a conservative zona pellucida
(ZP)-domain with eight cysteine residues within it. What
differs Miniature ZP-domain from the others (e. g., from
a ZP-domain of the extracellular transmembrane pro-
tein Dusky) its localization closely to the N-terminus and,
additionally, presence of the RGD-sequence (integrins
binding-site) within its structure (Fig. 1). Furthermore,
a predicted site of glycosylation, a transmembrane anchor
and a short intracellular C-terminal tail are among inte-
resting features of the Miniature protein, but not all: sin-
ce the 32-amino acid signal sequence and predicted sites
of recognition by furin-type endopeptidases near its trans-
membrane region are present, the processed Miniature
is assumed an extracellular protein [8–10]. Moreover,
ZP-domain itself serves as an extracellular matrix (ECM)
polymerization module [8]. It is important to mention
that ECM proteins control numerous tissue activities,
including regulation of diffusion of the secreted signa-
ling molecules such as morphogens and hormones [11].
The glance at the mechanism of the Bursicon/
Rickets signaling. Binding of bursicon to its receptor
Rickets triggers apoptosis and EMT in wing epithelia
of D. melanogaster [12] by activating of the heterotri-
meric Gs-protein [2, 6]. Upon its activation a GTP-
charged G�s subunit and a G�� heterodimer are pro-
duced [13]. Then, on the one hand the G�s-GTP acti-
vates a cAMP-PKA signal cascade that in turn leads to
apoptosis [2]; on the other hand the G�� seems to be res-
ponsible for the regulation of signaling branch control-
ling EMT and wing expansion [14]. Additionally, tis-
sue inhibitor of metalloproteinases, caspases, integrins,
and a �-catenin are implicated in Drosophila wing ma-
turation [15, 16].
The great Miniature actor. At the early Drosophi-
la wing developmental stages (between 32 and 60 h af-
ter puparium formation) initially columnar wing epithe-
lial cells normally flatten and so expand in the horizon-
tal plane, but this is not the case with miniature mutants
[8], that can be a cause of the 1.5 fold reduced wing size
phenotype appearance [17]. Additionally, orientation
disorders of the wing blade hairs, abnormal and so in-
complete adhesion of the two wing surfaces, presence
of the cell debris and cuticule invaginations (visible
cell outlines) in resulting space can be observed in mi-
niature mutant adult flies [8, 18], even of the different
species [19].
Moreover, it has recently become known that apop-
tosis and presumably also EMT are delayed in miniatu-
re loss-of-function mutant wings during maturation. It
is notable that these effects are not due to a second site
mutation, but interestingly that simultaneous disrup-
tion of the miniature and dusky (the nearest neighbor of
the miniature gene, and by the way another member of
the ECM, located so close that some incorporate them
into the one functional complex [18]) genes induces a
dramatic enhancement of, at least, the delay of apopto-
sis in wing epithelial cells, while mutation of the dusky
MINIATURE AS A REGULATORY PROTEIN OF THE BURSICON/RICKETS SIGNALING CASCADE IN D. melanogaster
Miniature
Dusky
699 aa
682 aa
ZPCC
ZP
RGD
Cys
Fig. 1. Structural models of the Mi-
niature and Dusky proteins. ZP – the
zona pellucida domain; CC – the coi-
led coil region, putative glycosyla-
tion sites indicated by triangles, pre-
dicted furin-type endopeptidase clea-
vage sites indicated by scissors
gene exclusively does not lead to any remarkable devia-
tions from the norm.
Thus, the conclusion can be made that although Dus-
ky is the important member of the apoptosis and EMT
performance, it seems to be just a prompter of the main
actor – Miniature.
Opposite to the mutant slow-down of apoptosis and
presumably EMT in wing epithelia, overexpression of
miniature UAS-construct by GAL4 wing drivers defini-
tely leads to the speed-up of bursicon-induced apopto-
sis, but, nevertheless, not to its precocious bursicon-in-
dependent performance, which is stimulated by acti-
vation of the signaling at the level of G�s[GTP] or be-
low. This fact forces us to mention here the last, but not
the less important thing: the Miniature protein acts at
the ligand or receptor levels, in accordance with scena-
rio of the Bursicon/Rickets signaling [20].
Hypothetical regulatory models of the Bursicon/
Rickets signaling. An enormous number of the hypo-
thesis and examples can be found, where ECM proteins
have not only the structural function but are also invol-
ved in different signal transduction pathways, in which
they can act as a sink (shown in Fig. 2, B) for accumu-
lation, stabilization and activity of the soluble signal
molecules, or as a solid deposit of the signal molecule
precursors. Another view is that ECM proteins can act
also as cofactors to some ligands or even be insoluble li-
gands for cognate receptors by themselves [11]. For in-
stance, type IV collagen directly binds Dpp, a Droso-
phila member of the TGF-� growth factors family [21].
Similarly, the ECM protein periostin binds and so ac-
cumulates Wnt-ligands [22].
Considering all above-mentioned hypothesis and
facts, we can try to propose some hypothetical models,
which can serve as specific illustrations of a possible
scenario of the D. melanogaster wing maturation events,
triggered by the bursicon heterodimer and its LGR-re-
ceptor Rickets, interplay regulation of which is under
control of the Miniature and Dusky proteins (Fig. 2, A, B).
Notwithstanding that Miniature and Dusky both ha-
ve predicted cleavage sites (Fig. 1), veraciously it is not
known whether they are self-dependent components of
the ECM or stay anchored on a plasma membrane.
The first model challenges the second possibility
(Fig. 2, A): ZP-domain containing proteins remain as-
sociated to the plasma membrane and bind the neuro-
hormone bursicon. Thus, defending its stability and si-
multaneously accumulating the signal, they support its
amplification, continuity and maintenance of its stable
concentrations within wing epithelial tissue by preven-
ting the preterm washout of the bursicon with the hemo-
lymph flow from the wing cavity during maturation; or
Miniature and Dusky proteins can even act as cofactors.
According to another model, both Miniature and
Dusky could be cleaved and then relatively freely diffu-
se into the ECM, where due to polymerization features
of their ZP-domains they can form some kind of a «sink»,
where bursicon can be accumulated and then indepen-
dently or in a complex diffuse inside the wing blade,
transducing the signal further and further through the
wing epithelial tissue (Fig. 2, B). An exciting verifica-
tion of this hypothesis can be found in our previous pa-
per [20].
None of these hypothetical models does exclude or
contradict each other. Thus, in the first case, created
complex could be cleaved off from the plasma memb-
rane and act according to the scenario of the second mo-
del. In another case, created Miniature-Dusky-Bursicon
complex can act, in turn, as a bursicon pool, thus main-
taining required concentrations of the Rickets receptor
290
BILOUSOV O. O., KATANAEV V. L., KOZERETSKA I. A.
A B Cytoplasm
Cytoplasm
Cytoplasm
Rickets Rickets
Rickets Rickets
Rickets
Apoptosis
EMT
ECM
bursicon
Dusky
Miniature
ECM
“sink”
Fig. 2. Hypothetical mo- dels
of the interactions bet- ween
Miniature, Dusky, he-
terodimer (burs and pburs)
bursicon and its LGR-recep- tor
Rickets: A – «anchor»
hypothesis; B – «sink»
hypothesis. EMT – epithe-
lial-to-mesenchymal tran-
sition; ECM – extracellu- lar
matrix
ligand and providing continuity of the signal: main fea-
tures of the first model.
Unfortunately, until there is no experimental eviden-
ce of the physical interaction between Miniature and
bursicon, these proposed models still remain just hypo-
thetical ones and so additional investigations should be
provided for their perfection and/or confirmation.
Î. Î. Á³ëîóñîâ, Â. Ë. Êàòàíàºâ, ². À. Êîçåðåöüêà
Miniature ÿê ã³ïîòåòè÷íèé á³ëîê – ðåãóëÿòîð ñèãíàëüíîãî êàñêàäó
Bursicon/Rickets ó êðèëîâîìó åï³òå볿 Drosophila melanogaster
³äðàçó ï³ñëÿ âèëóïëåííÿ ç ïóïàð³þ â êðèë³ äðîçîô³ëè â³äáóâàºòüñÿ
íèçêà ïðîöåñ³â ï³ä çàãàëüíîþ íàçâîþ ìàòóðàö³ÿ, ÿê³ çàïóñêàþòü-
ñÿ íåéðîãîðìîíîì áóðñèêîíîì òà éîãî ðåöåïòîðîì Rickets. Â îã-
ëÿä³ ïðåäñòàâëåíî ã³ïîòåòè÷í³ ìîäåë³ âçàºìî䳿 á³ëê³â ïîçàêë³-
òèííîãî ìàòðèêñó Miniature, à òàêîæ Dusky, ÿê³ º íåîáõ³äíèìè
ÿê íà ðàíí³õ ñòàä³ÿõ ôîðìóâàííÿ êðèëà, òàê ³ ï³ñëÿ âèëóïëåííÿ ìó-
õè, ç á³ëêàìè, â³äïîâ³äàëüíèìè çà çàïóñê ïðîöåñ³â ìàòóðàö³¿ êðèëà
ó D. melanogaster.
Êëþ÷îâ³ ñëîâà: áóðñèêîí, Rickets, Miniature, Dusky, ìàòóðàö³ÿ
êðèëà.
À. Î. Áåëîóñîâ, Â. Ë. Êàòàíàåâ, È. À. Êîçåðåöêàÿ
Miniature êàê ãèïîòåòè÷åñêèé áåëîê – ðåãóëÿòîð ñèãíàëüíîãî êàñêàäà
Bursicon/Rickets â êðûëîâîì ýïèòåëèè Drosophila melanogaster
Ñðàçó ïîñëå âûëóïëåíèÿ èç ïóïàðèÿ â êðûëå äðîçîôèëû ïðîèñõî-
äèò ðÿä ïðîöåññîâ ïîä îáùèì íàçâàíèåì ìàòóðàöèÿ, çàïóñêàå-
ìûõ íåéðîãîðìîíîì áóðñèêîíîì è åãî ðåöåïòîðîì Rickets. Â
îáçîðå ïðåäñòàâëåíû ãèïîòåòè÷åñêèå ìîäåëè âçàèìîäåéñòâèÿ
áåëêîâ âíåêëåòî÷íîãî ìàòðèêñà Miniature, à òàêæå Dusky, íåîá-
õîäèìûõ êàê íà ðàííèõ ñòàäèÿõ ôîðìèðîâàíèÿ êðûëà, òàê è ïîñëå
âûëóïëåíèÿ ìóõè, ñ áåëêàìè, îòâåòñòâåííûìè çà çàïóñê ïðîöåñîâ
ìàòóðàöèè êðûëà ó D. melanogaster.
Êëþ÷åâûå ñëîâà: áóðñèêîí, Rickets, Miniature, Dusky, ìàòóðà-
öèÿ êðûëà.
REFERENCES
1. Honegger H. W., Dewey E. M., Ewer J. Bursicon, the tanning
hormone of insects: recent advances following the discovery of
its molecular identity // J. Comp. Physiol. A Neuroethol. Sens.
Neural Behav. Physiol.–2008.–194, N 12.–P. 989–1005.
2. Kimura K., Kodama A., Hayasaka Y., Ohta T. Activation of the
cAMP/PKA signaling pathway is required for post-ecdysial cell
death in wing epidermal cells of Drosophila melanogaster //
Development.–2004.–131, N 7.–P. 1597–1606.
3. Natzle J. E., Kiger J. A. Jr., Green M. M. Bursicon signaling mu-
tations separate the epithelial-mesenchymal transition from
programmed cell death during Drosophila melanogaster wing
maturation // Genetics.–2008.–180, N 2.–P. 885–893.
4. Togel M., Pass G., Paululat A. The Drosophila wing hearts ori-
ginate from pericardial cells and are essential for wing matura-
tion // Dev. Biol.–2008.–318, N 1.–P. 29–37.
5. Johnson S. A., Milner M. J. The final stages of wing develop-
ment in Drosophila melanogaster // Tissue Cell.–1987.–19,
N 4.–P. 505–513.
6. Luo C. W., Dewey E. M., Sudo S., Ewer J., Hsu S. Y., Honegger H.
W., Hsueh A. J. W. Bursicon, the insect cuticle-hardening hor-
mone, is a heterodimeric cystine knot protein that activates G
protein-coupled receptor LGR2 // Proc. Natl Acad. Sci. USA.–
2005.–102, N 8.–P. 2820–2825.
7. Van Loy T., Vandersmissen H. P., Van Hiel M. B., Poels J., Ver-
linden H., Badisco L., Vassart G., Vanden Broeck J. Comparati-
ve genomics of leucine-rich repeats containing G protein-coup-
led receptors and their ligands // Gen. Comp. Endocrinol.–2008.–
155, N 1.–P. 14–21.
8. Roch F., Alonso C. R., Akam M. Drosophila miniature and dusky
encode ZP proteins required for cytoskeletal reorganisation du-
ring wing morphogenesis // J. Cell Sci.–2003.–116, Pt 7.–P. 1199–
1207.
9. Jovine L., Darie C. C., Litscher E. S., Wassarman P. M. Zona
pellucida domain proteins // Annu. Rev. Biochem.–2005.–
74.–P. 83–114.
10. Zhuk O. W. Kozeretska I. A., Sivolob A. V. Min-like protein of
Drosophila virilis and its mutant forms: primary structure and
possible functional role // Biopolym. Cell.–2008.–24, N 4.–
P. 286–293.
11. Hynes R. O. The extracellular matrix: not just pretty fibrils //
Science.–2009.–326, N 5957.–P. 1216–1219.
12. Baker J. D., Truman J. W. Mutations in the Drosophila glyco-
protein hormone receptor, rickets, eliminate neuropeptide-in-
duced tanning and selectively block a stereotyped behavioral
program // J. Exp. Biol.–2002.–205, Pt 17.–P. 2555–2565.
13. Gilman A. G. G proteins: transducers of receptor-generated sig-
nals // Annu. Rev. Biochem.–1987.–56–P. 615–649.
14. Katanayeva N., Kopein D., Portmann R., Hess D., Katanaev V. L.
Competing activities of heterotrimeric G proteins in Drosophila
wing maturation // PloS One.–2010.–5, N 8.–e12331.
15. Brower D. L., Jaffe S. M. Requirement for integrins during Droso-
phila wing development // Nature.–1989.–342, N 6247.–P. 285–
287.
16. Kiger J. A. Jr, Natzle J. E., Kimbrell D. A., Paddy M. R., Klein-
hesselink K., Green M. M. Tissue remodeling during maturation
of the Drosophila wing // Dev. Biol.–2007.–301, N 1.–P. 178–191.
17. Dobzhansky Th. The influence of the quantity and quality of chro-
mosomal material on the size of the cells in Drosophila mela-
nogaster // Dev. Genes Evol.–1929.–115, N 3.–P. 363–379.
18. Newby L. M., White L., DiBartolomeis S. M., Walker B. J., Dow-
se H. B., Ringo J. M., Khuda N., Jackson F. R. Mutational analy-
sis of the Drosophila miniature-dusky (m-dy) locus: effects on
cell size and circadian rhythms // Genetics.–1991.–128, N 3.–
P. 571–582.
19. Kozeretska I. A., Gubenko I. S., Gorb S. N. New unusual miniatu-
re-like wing mutation in Drosophila virilis // J. Morphol.–2004.–
261, N 3.–P. 270–275.
20. Bilousov O. O., Kozeretska I. A., Katanaev V. L. Role of the gene
Miniature in Drosophila wing maturation // genesis.–2012.
DOI: 10.1002/dvg. 22016.
21. Wang X., Harris R. E., Bayston L. J., Ashe H. L. Type IV colla-
gens regulate BMP signalling in Drosophila // Nature.–2008.–
455, N 7209.–P. 72–77.
22. Malanchi I., Santamaria-Martinez A., Susanto E., Peng H., Lehr
H. A., Delaloye J. F., Huelsken J. Interactions between cancer
stem cells and their niche govern metastatic colonization // Natu-
re.–2012.–481, N 7379.–P. 85–89.
Received 10.04.2012
MINIATURE AS A REGULATORY PROTEIN OF THE BURSICON/RICKETS SIGNALING CASCADE IN D. melanogaster
291
|