Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster

Soon after eclosion, epithelial cells of the Drosophila wing undergo a number of the processes due to a release of the neurohormone bursicon and its further binding to the GPCR Rickets, collectively referred to as wing maturation. Here we propose hypothetical models of the interaction between extrac...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Bilousov, O.O., Katanaev, V.L., Kozeretska, I.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2012
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/156928
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster / O.O. Bilousov, V.L. Katanaev, I.A. Kozeretska // Вiopolymers and Cell. — 2012. — Т. 28, № 4. — С. 288-291. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156928
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1569282025-02-09T13:11:47Z Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster Miniature як гіпотетичний білок – регулятор сигнального каскаду Bursicon/Rickets у криловому епітелії Drosophila melanogaster Miniature как гипотетический белок – регулятор сигнального каскада Bursicon/Rickets в крыловом эпителии Drosophila melanogaster Bilousov, O.O. Katanaev, V.L. Kozeretska, I.A. Minireviews Soon after eclosion, epithelial cells of the Drosophila wing undergo a number of the processes due to a release of the neurohormone bursicon and its further binding to the GPCR Rickets, collectively referred to as wing maturation. Here we propose hypothetical models of the interaction between extracellular Miniature, and also Dusky, proteins and proteins responsible for triggering of the wing maturation processes in Drosophila melanogaster. Keywords: bursicon, Rickets, Miniature, Dusky, wing maturation. Відразу після вилуплення з пупарію в крилі дрозофіли відбувається низка процесів під загальною назвою матурація, які запускаються нейрогормоном бурсиконом та його рецептором Rickets. В огляді представлено гіпотетичні моделі взаємодії білків позаклітинного матриксу Miniature, а також Dusky, які є необхідними як на ранніх стадіях формування крила, так і після вилуплення мухи, з білками, відповідальними за запуск процесів матурації крила у D. melanogaster. Ключові словаs: бурсикон, Rickets, Miniature, Dusky, матурація крила. Сразу после вылупления из пупария в крыле дрозофилы происходит ряд процессов под общим названием матурация, запускаемых нейрогормоном бурсиконом и его рецептором Rickets. В обзоре представлены гипотетические модели взаимодействия белков внеклеточного матрикса Miniature, а также Dusky, необходимых как на ранних стадиях формирования крыла, так и после вылупления мухи, с белками, ответственными за запуск процесов матурации крыла у D. melanogaster. Ключевые слова: бурсикон, Rickets, Miniature, Dusky, матурация крыла. 2012 Article Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster / O.O. Bilousov, V.L. Katanaev, I.A. Kozeretska // Вiopolymers and Cell. — 2012. — Т. 28, № 4. — С. 288-291. — Бібліогр.: 22 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.000060 https://nasplib.isofts.kiev.ua/handle/123456789/156928 575.164 en Вiopolymers and Cell application/pdf Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Minireviews
Minireviews
spellingShingle Minireviews
Minireviews
Bilousov, O.O.
Katanaev, V.L.
Kozeretska, I.A.
Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster
Вiopolymers and Cell
description Soon after eclosion, epithelial cells of the Drosophila wing undergo a number of the processes due to a release of the neurohormone bursicon and its further binding to the GPCR Rickets, collectively referred to as wing maturation. Here we propose hypothetical models of the interaction between extracellular Miniature, and also Dusky, proteins and proteins responsible for triggering of the wing maturation processes in Drosophila melanogaster. Keywords: bursicon, Rickets, Miniature, Dusky, wing maturation.
format Article
author Bilousov, O.O.
Katanaev, V.L.
Kozeretska, I.A.
author_facet Bilousov, O.O.
Katanaev, V.L.
Kozeretska, I.A.
author_sort Bilousov, O.O.
title Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster
title_short Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster
title_full Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster
title_fullStr Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster
title_full_unstemmed Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster
title_sort miniature as a hypothetical regulatory protein of the bursicon/rickets signaling cascade in the wing epithelia of drosophila melanogaster
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2012
topic_facet Minireviews
url https://nasplib.isofts.kiev.ua/handle/123456789/156928
citation_txt Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster / O.O. Bilousov, V.L. Katanaev, I.A. Kozeretska // Вiopolymers and Cell. — 2012. — Т. 28, № 4. — С. 288-291. — Бібліогр.: 22 назв. — англ.
series Вiopolymers and Cell
work_keys_str_mv AT bilousovoo miniatureasahypotheticalregulatoryproteinofthebursiconricketssignalingcascadeinthewingepitheliaofdrosophilamelanogaster
AT katanaevvl miniatureasahypotheticalregulatoryproteinofthebursiconricketssignalingcascadeinthewingepitheliaofdrosophilamelanogaster
AT kozeretskaia miniatureasahypotheticalregulatoryproteinofthebursiconricketssignalingcascadeinthewingepitheliaofdrosophilamelanogaster
AT bilousovoo miniatureâkgípotetičnijbílokregulâtorsignalʹnogokaskadubursiconricketsukrilovomuepítelíídrosophilamelanogaster
AT katanaevvl miniatureâkgípotetičnijbílokregulâtorsignalʹnogokaskadubursiconricketsukrilovomuepítelíídrosophilamelanogaster
AT kozeretskaia miniatureâkgípotetičnijbílokregulâtorsignalʹnogokaskadubursiconricketsukrilovomuepítelíídrosophilamelanogaster
AT bilousovoo miniaturekakgipotetičeskijbelokregulâtorsignalʹnogokaskadabursiconricketsvkrylovomépiteliidrosophilamelanogaster
AT katanaevvl miniaturekakgipotetičeskijbelokregulâtorsignalʹnogokaskadabursiconricketsvkrylovomépiteliidrosophilamelanogaster
AT kozeretskaia miniaturekakgipotetičeskijbelokregulâtorsignalʹnogokaskadabursiconricketsvkrylovomépiteliidrosophilamelanogaster
first_indexed 2025-11-26T01:43:09Z
last_indexed 2025-11-26T01:43:09Z
_version_ 1849815350908026880
fulltext UDC 575.164 Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster O. O. Bilousov1, 3, V. L. Katanaev1, 2, I. A. Kozeretska3 1Department of Pharmacology and Toxicology, University of Lausanne 27, Bugnon Str., CH-1005 Lausanne, Switzerland 2Institute of Protein Research, Russian Academy of Sciences Pushchino, Moscow Region, Russian Federation, 142290 3Educational and Scientific Center «Institute of Biology», National Taras Shevchenko University of Kyiv 64/13, Volodymyrska Str., Kyiv, Ukraine, 01601 iryna.kozeretska@gmail.com Soon after eclosion, epithelial cells of the Drosophila wing undergo a number of the processes due to a release of the neurohormone bursicon and its further binding to the GPCR Rickets, collectively referred to as wing matura- tion. Here we propose hypothetical models of the interaction between extracellular Miniature, and also Dusky, proteins and proteins responsible for triggering of the wing maturation processes in Drosophila melanogaster. Keywords: bursicon, Rickets, Miniature, Dusky, wing maturation. The wing of a newly emerged fly is a pale soft folded structure. Shortly after fly eclosion from a pupal case the neurohormone bursicon, synthesized in adult insect’s brain at this stage of development and then released into hemolymph, triggers a number of the processes in Dro- sophila wing epithelial cells, which then lead to so-cal- led wing maturation [1]. Apoptosis and epithelial-to- mesenchymal transition (EMT), accompanied by the cell debris wash-out from the wing cavity with a flow of hemolymph (generated and promoted by pumping contractions of bilateral «wing hearts», which are loca- ted in the Drosophila thorax), are two pivotal acts, infal- lible progress of which is crucial for successful matu- ration of the Drosophila wing [2–4]. Fusion of the two cuticule (dorsal and ventral) sheets, produced by under- lying wing epithelial cells at the previous wing morpho- genesis stages, theirs subsequent melanization and scle- rotization are three final accords of this symphony or- chestrated by the bursicon, which ends by the forma- tion of the expanded and flattened, sturdy and flexible flying organ of Drosophila melanogaster [1, 5]. The neurohormone bursicon, and its Rickets re- ceptor. Bioactive bursicon has of molecular weight of 30 kDa and is composed of the two subunits: � (burs) and � (pburs), which after cleavage of the 21-amino acid signal sequence decrease to approximately 15 kDa each. Both bursicon moieties have the specific three-di- mensional structure common for cysteine knot proteins (CKPs). It is a ring, formed by disulphide bonds establi- shed between six cysteine residues in a certain manner, two antiparallel �-strands (so-called fingers), formed by three distinct domains, and an �-helical structure (named heel). BURS and PBURS can form homo- and heterodimers in the aqueous surrounding, due to the hydrophobic properties of their residues and, normally, bioactive bursicon is a heterodimer, but also homodi- mers of �- and �-subunits can be found in vivo with still yet unknown functions [1, 6, 7]. The CKP family contains vertebrate glycoprotein hormones (e. g., anterior pituitary hormones follitropin, lutropin and thyrotropin, and placental chorionic gona- dotropin), growth factors (e. g., nerve growth factor, transforming growth factor-beta (TGF-�) and platelet- derived growth factor), mucins and bone morphogene- tic protein antagonists. ISSN 0233–7657. Biopolymers and Cell. 2012. Vol. 28. N 4. P. 288–291 288 � Institute of Molecular Biology and Genetics, NAS of Ukraine, 2012 289 It also necessary to say that homologs of Drosophi- la bursicon monomers can be found in many arthro- pods, mainly including species from insecta, crustacea and arachnida, and also in the echinoderm Strongylo- centrotus purpuratus (purple sea urchin) [1]. The bursicon receptor has been recently identified and named Rickets. This protein belongs to a peculiar subgroup (leucine-rich repeat-containing G-protein coupled receptors – LGRs) of the great family of the G- protein coupled receptors (GPCRs). Besides common features of GPCRs, members of this subgroup have a large N-terminal ectodomain involved in selective hor- mone binding. In case of the Rickets receptor, 13–18 leucine-rich repeat amino acid motifs are present in its ectodomain structure, what in turn brings this receptor to a subtype B of the LGR subgroup [6, 7]. What we should know about Miniature. The pro- tein encoded by the miniature gene belongs to a ZP-do- main containing superfamily of the proteins. It means that Miniature has rather a conservative zona pellucida (ZP)-domain with eight cysteine residues within it. What differs Miniature ZP-domain from the others (e. g., from a ZP-domain of the extracellular transmembrane pro- tein Dusky) its localization closely to the N-terminus and, additionally, presence of the RGD-sequence (integrins binding-site) within its structure (Fig. 1). Furthermore, a predicted site of glycosylation, a transmembrane anchor and a short intracellular C-terminal tail are among inte- resting features of the Miniature protein, but not all: sin- ce the 32-amino acid signal sequence and predicted sites of recognition by furin-type endopeptidases near its trans- membrane region are present, the processed Miniature is assumed an extracellular protein [8–10]. Moreover, ZP-domain itself serves as an extracellular matrix (ECM) polymerization module [8]. It is important to mention that ECM proteins control numerous tissue activities, including regulation of diffusion of the secreted signa- ling molecules such as morphogens and hormones [11]. The glance at the mechanism of the Bursicon/ Rickets signaling. Binding of bursicon to its receptor Rickets triggers apoptosis and EMT in wing epithelia of D. melanogaster [12] by activating of the heterotri- meric Gs-protein [2, 6]. Upon its activation a GTP- charged G�s subunit and a G�� heterodimer are pro- duced [13]. Then, on the one hand the G�s-GTP acti- vates a cAMP-PKA signal cascade that in turn leads to apoptosis [2]; on the other hand the G�� seems to be res- ponsible for the regulation of signaling branch control- ling EMT and wing expansion [14]. Additionally, tis- sue inhibitor of metalloproteinases, caspases, integrins, and a �-catenin are implicated in Drosophila wing ma- turation [15, 16]. The great Miniature actor. At the early Drosophi- la wing developmental stages (between 32 and 60 h af- ter puparium formation) initially columnar wing epithe- lial cells normally flatten and so expand in the horizon- tal plane, but this is not the case with miniature mutants [8], that can be a cause of the 1.5 fold reduced wing size phenotype appearance [17]. Additionally, orientation disorders of the wing blade hairs, abnormal and so in- complete adhesion of the two wing surfaces, presence of the cell debris and cuticule invaginations (visible cell outlines) in resulting space can be observed in mi- niature mutant adult flies [8, 18], even of the different species [19]. Moreover, it has recently become known that apop- tosis and presumably also EMT are delayed in miniatu- re loss-of-function mutant wings during maturation. It is notable that these effects are not due to a second site mutation, but interestingly that simultaneous disrup- tion of the miniature and dusky (the nearest neighbor of the miniature gene, and by the way another member of the ECM, located so close that some incorporate them into the one functional complex [18]) genes induces a dramatic enhancement of, at least, the delay of apopto- sis in wing epithelial cells, while mutation of the dusky MINIATURE AS A REGULATORY PROTEIN OF THE BURSICON/RICKETS SIGNALING CASCADE IN D. melanogaster Miniature Dusky 699 aa 682 aa ZPCC ZP RGD Cys Fig. 1. Structural models of the Mi- niature and Dusky proteins. ZP – the zona pellucida domain; CC – the coi- led coil region, putative glycosyla- tion sites indicated by triangles, pre- dicted furin-type endopeptidase clea- vage sites indicated by scissors gene exclusively does not lead to any remarkable devia- tions from the norm. Thus, the conclusion can be made that although Dus- ky is the important member of the apoptosis and EMT performance, it seems to be just a prompter of the main actor – Miniature. Opposite to the mutant slow-down of apoptosis and presumably EMT in wing epithelia, overexpression of miniature UAS-construct by GAL4 wing drivers defini- tely leads to the speed-up of bursicon-induced apopto- sis, but, nevertheless, not to its precocious bursicon-in- dependent performance, which is stimulated by acti- vation of the signaling at the level of G�s[GTP] or be- low. This fact forces us to mention here the last, but not the less important thing: the Miniature protein acts at the ligand or receptor levels, in accordance with scena- rio of the Bursicon/Rickets signaling [20]. Hypothetical regulatory models of the Bursicon/ Rickets signaling. An enormous number of the hypo- thesis and examples can be found, where ECM proteins have not only the structural function but are also invol- ved in different signal transduction pathways, in which they can act as a sink (shown in Fig. 2, B) for accumu- lation, stabilization and activity of the soluble signal molecules, or as a solid deposit of the signal molecule precursors. Another view is that ECM proteins can act also as cofactors to some ligands or even be insoluble li- gands for cognate receptors by themselves [11]. For in- stance, type IV collagen directly binds Dpp, a Droso- phila member of the TGF-� growth factors family [21]. Similarly, the ECM protein periostin binds and so ac- cumulates Wnt-ligands [22]. Considering all above-mentioned hypothesis and facts, we can try to propose some hypothetical models, which can serve as specific illustrations of a possible scenario of the D. melanogaster wing maturation events, triggered by the bursicon heterodimer and its LGR-re- ceptor Rickets, interplay regulation of which is under control of the Miniature and Dusky proteins (Fig. 2, A, B). Notwithstanding that Miniature and Dusky both ha- ve predicted cleavage sites (Fig. 1), veraciously it is not known whether they are self-dependent components of the ECM or stay anchored on a plasma membrane. The first model challenges the second possibility (Fig. 2, A): ZP-domain containing proteins remain as- sociated to the plasma membrane and bind the neuro- hormone bursicon. Thus, defending its stability and si- multaneously accumulating the signal, they support its amplification, continuity and maintenance of its stable concentrations within wing epithelial tissue by preven- ting the preterm washout of the bursicon with the hemo- lymph flow from the wing cavity during maturation; or Miniature and Dusky proteins can even act as cofactors. According to another model, both Miniature and Dusky could be cleaved and then relatively freely diffu- se into the ECM, where due to polymerization features of their ZP-domains they can form some kind of a «sink», where bursicon can be accumulated and then indepen- dently or in a complex diffuse inside the wing blade, transducing the signal further and further through the wing epithelial tissue (Fig. 2, B). An exciting verifica- tion of this hypothesis can be found in our previous pa- per [20]. None of these hypothetical models does exclude or contradict each other. Thus, in the first case, created complex could be cleaved off from the plasma memb- rane and act according to the scenario of the second mo- del. In another case, created Miniature-Dusky-Bursicon complex can act, in turn, as a bursicon pool, thus main- taining required concentrations of the Rickets receptor 290 BILOUSOV O. O., KATANAEV V. L., KOZERETSKA I. A. A B Cytoplasm Cytoplasm Cytoplasm Rickets Rickets Rickets Rickets Rickets Apoptosis EMT ECM bursicon Dusky Miniature ECM “sink” Fig. 2. Hypothetical mo- dels of the interactions bet- ween Miniature, Dusky, he- terodimer (burs and pburs) bursicon and its LGR-recep- tor Rickets: A – «anchor» hypothesis; B – «sink» hypothesis. EMT – epithe- lial-to-mesenchymal tran- sition; ECM – extracellu- lar matrix ligand and providing continuity of the signal: main fea- tures of the first model. Unfortunately, until there is no experimental eviden- ce of the physical interaction between Miniature and bursicon, these proposed models still remain just hypo- thetical ones and so additional investigations should be provided for their perfection and/or confirmation. Î. Î. Á³ëîóñîâ, Â. Ë. Êàòàíàºâ, ². À. Êîçåðåöüêà Miniature ÿê ã³ïîòåòè÷íèé á³ëîê – ðåãóëÿòîð ñèãíàëüíîãî êàñêàäó Bursicon/Rickets ó êðèëîâîìó åï³òå볿 Drosophila melanogaster ³äðàçó ï³ñëÿ âèëóïëåííÿ ç ïóïàð³þ â êðèë³ äðîçîô³ëè â³äáóâàºòüñÿ íèçêà ïðîöåñ³â ï³ä çàãàëüíîþ íàçâîþ ìàòóðàö³ÿ, ÿê³ çàïóñêàþòü- ñÿ íåéðîãîðìîíîì áóðñèêîíîì òà éîãî ðåöåïòîðîì Rickets.  îã- ëÿä³ ïðåäñòàâëåíî ã³ïîòåòè÷í³ ìîäåë³ âçàºìî䳿 á³ëê³â ïîçàêë³- òèííîãî ìàòðèêñó Miniature, à òàêîæ Dusky, ÿê³ º íåîáõ³äíèìè ÿê íà ðàíí³õ ñòàä³ÿõ ôîðìóâàííÿ êðèëà, òàê ³ ï³ñëÿ âèëóïëåííÿ ìó- õè, ç á³ëêàìè, â³äïîâ³äàëüíèìè çà çàïóñê ïðîöåñ³â ìàòóðàö³¿ êðèëà ó D. melanogaster. Êëþ÷îâ³ ñëîâà: áóðñèêîí, Rickets, Miniature, Dusky, ìàòóðàö³ÿ êðèëà. À. Î. Áåëîóñîâ, Â. Ë. Êàòàíàåâ, È. À. Êîçåðåöêàÿ Miniature êàê ãèïîòåòè÷åñêèé áåëîê – ðåãóëÿòîð ñèãíàëüíîãî êàñêàäà Bursicon/Rickets â êðûëîâîì ýïèòåëèè Drosophila melanogaster Ñðàçó ïîñëå âûëóïëåíèÿ èç ïóïàðèÿ â êðûëå äðîçîôèëû ïðîèñõî- äèò ðÿä ïðîöåññîâ ïîä îáùèì íàçâàíèåì ìàòóðàöèÿ, çàïóñêàå- ìûõ íåéðîãîðìîíîì áóðñèêîíîì è åãî ðåöåïòîðîì Rickets.  îáçîðå ïðåäñòàâëåíû ãèïîòåòè÷åñêèå ìîäåëè âçàèìîäåéñòâèÿ áåëêîâ âíåêëåòî÷íîãî ìàòðèêñà Miniature, à òàêæå Dusky, íåîá- õîäèìûõ êàê íà ðàííèõ ñòàäèÿõ ôîðìèðîâàíèÿ êðûëà, òàê è ïîñëå âûëóïëåíèÿ ìóõè, ñ áåëêàìè, îòâåòñòâåííûìè çà çàïóñê ïðîöåñîâ ìàòóðàöèè êðûëà ó D. melanogaster. Êëþ÷åâûå ñëîâà: áóðñèêîí, Rickets, Miniature, Dusky, ìàòóðà- öèÿ êðûëà. REFERENCES 1. Honegger H. W., Dewey E. M., Ewer J. Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity // J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.–2008.–194, N 12.–P. 989–1005. 2. Kimura K., Kodama A., Hayasaka Y., Ohta T. Activation of the cAMP/PKA signaling pathway is required for post-ecdysial cell death in wing epidermal cells of Drosophila melanogaster // Development.–2004.–131, N 7.–P. 1597–1606. 3. Natzle J. E., Kiger J. A. Jr., Green M. M. Bursicon signaling mu- tations separate the epithelial-mesenchymal transition from programmed cell death during Drosophila melanogaster wing maturation // Genetics.–2008.–180, N 2.–P. 885–893. 4. Togel M., Pass G., Paululat A. The Drosophila wing hearts ori- ginate from pericardial cells and are essential for wing matura- tion // Dev. Biol.–2008.–318, N 1.–P. 29–37. 5. Johnson S. A., Milner M. J. The final stages of wing develop- ment in Drosophila melanogaster // Tissue Cell.–1987.–19, N 4.–P. 505–513. 6. Luo C. W., Dewey E. M., Sudo S., Ewer J., Hsu S. Y., Honegger H. W., Hsueh A. J. W. Bursicon, the insect cuticle-hardening hor- mone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2 // Proc. Natl Acad. Sci. USA.– 2005.–102, N 8.–P. 2820–2825. 7. Van Loy T., Vandersmissen H. P., Van Hiel M. B., Poels J., Ver- linden H., Badisco L., Vassart G., Vanden Broeck J. Comparati- ve genomics of leucine-rich repeats containing G protein-coup- led receptors and their ligands // Gen. Comp. Endocrinol.–2008.– 155, N 1.–P. 14–21. 8. Roch F., Alonso C. R., Akam M. Drosophila miniature and dusky encode ZP proteins required for cytoskeletal reorganisation du- ring wing morphogenesis // J. Cell Sci.–2003.–116, Pt 7.–P. 1199– 1207. 9. Jovine L., Darie C. C., Litscher E. S., Wassarman P. M. Zona pellucida domain proteins // Annu. Rev. Biochem.–2005.– 74.–P. 83–114. 10. Zhuk O. W. Kozeretska I. A., Sivolob A. V. Min-like protein of Drosophila virilis and its mutant forms: primary structure and possible functional role // Biopolym. Cell.–2008.–24, N 4.– P. 286–293. 11. Hynes R. O. The extracellular matrix: not just pretty fibrils // Science.–2009.–326, N 5957.–P. 1216–1219. 12. Baker J. D., Truman J. W. Mutations in the Drosophila glyco- protein hormone receptor, rickets, eliminate neuropeptide-in- duced tanning and selectively block a stereotyped behavioral program // J. Exp. Biol.–2002.–205, Pt 17.–P. 2555–2565. 13. Gilman A. G. G proteins: transducers of receptor-generated sig- nals // Annu. Rev. Biochem.–1987.–56–P. 615–649. 14. Katanayeva N., Kopein D., Portmann R., Hess D., Katanaev V. L. Competing activities of heterotrimeric G proteins in Drosophila wing maturation // PloS One.–2010.–5, N 8.–e12331. 15. Brower D. L., Jaffe S. M. Requirement for integrins during Droso- phila wing development // Nature.–1989.–342, N 6247.–P. 285– 287. 16. Kiger J. A. Jr, Natzle J. E., Kimbrell D. A., Paddy M. R., Klein- hesselink K., Green M. M. Tissue remodeling during maturation of the Drosophila wing // Dev. Biol.–2007.–301, N 1.–P. 178–191. 17. Dobzhansky Th. The influence of the quantity and quality of chro- mosomal material on the size of the cells in Drosophila mela- nogaster // Dev. Genes Evol.–1929.–115, N 3.–P. 363–379. 18. Newby L. M., White L., DiBartolomeis S. M., Walker B. J., Dow- se H. B., Ringo J. M., Khuda N., Jackson F. R. Mutational analy- sis of the Drosophila miniature-dusky (m-dy) locus: effects on cell size and circadian rhythms // Genetics.–1991.–128, N 3.– P. 571–582. 19. Kozeretska I. A., Gubenko I. S., Gorb S. N. New unusual miniatu- re-like wing mutation in Drosophila virilis // J. Morphol.–2004.– 261, N 3.–P. 270–275. 20. Bilousov O. O., Kozeretska I. A., Katanaev V. L. Role of the gene Miniature in Drosophila wing maturation // genesis.–2012. DOI: 10.1002/dvg. 22016. 21. Wang X., Harris R. E., Bayston L. J., Ashe H. L. Type IV colla- gens regulate BMP signalling in Drosophila // Nature.–2008.– 455, N 7209.–P. 72–77. 22. Malanchi I., Santamaria-Martinez A., Susanto E., Peng H., Lehr H. A., Delaloye J. F., Huelsken J. Interactions between cancer stem cells and their niche govern metastatic colonization // Natu- re.–2012.–481, N 7379.–P. 85–89. Received 10.04.2012 MINIATURE AS A REGULATORY PROTEIN OF THE BURSICON/RICKETS SIGNALING CASCADE IN D. melanogaster 291