Self-similar groups and finite Gelfand pairs
We study the Basilica group B, the iterated monodromy group I of the complex polynomial z 2 + i and the Hanoi Towers group H(3). The first two groups act on the binary rooted tree, the third one on the ternary rooted tree. We prove that the action of B, I and H(3) on each level is 2-points homog...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2007 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/157371 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Self-similar groups and finite Gelfand pairs / D. D’Angeli, A. Donno // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 54–69. — Бібліогр.: 14 назв. — англ. |