Self-similar groups and finite Gelfand pairs

We study the Basilica group B, the iterated monodromy group I of the complex polynomial z 2 + i and the Hanoi Towers group H(3). The first two groups act on the binary rooted tree, the third one on the ternary rooted tree. We prove that the action of B, I and H(3) on each level is 2-points homog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2007
Hauptverfasser: D’Angeli, D., Donno, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2007
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/157371
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Self-similar groups and finite Gelfand pairs / D. D’Angeli, A. Donno // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 54–69. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157371
record_format dspace
spelling D’Angeli, D.
Donno, A.
2019-06-20T03:07:43Z
2019-06-20T03:07:43Z
2007
Self-similar groups and finite Gelfand pairs / D. D’Angeli, A. Donno // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 54–69. — Бібліогр.: 14 назв. — англ.
2000 Mathematics Subject Classification: 20E08, 20F65, 20F10, 05C25, 43A85, 43A90.
1726-3255
https://nasplib.isofts.kiev.ua/handle/123456789/157371
We study the Basilica group B, the iterated monodromy group I of the complex polynomial z 2 + i and the Hanoi Towers group H(3). The first two groups act on the binary rooted tree, the third one on the ternary rooted tree. We prove that the action of B, I and H(3) on each level is 2-points homogeneous with respect to the ultrametric distance. This gives rise to symmetric Gelfand pairs: we then compute the corresponding spherical functions. In the case of B and H(3) this result can also be obtained by using the strong property that the rigid stabilizers of the vertices of the first level of the tree act spherically transitively on the respective subtrees. On the other hand, this property does not hold in the case of I.
We were introduced to beautiful theory of self-similar groups during our stay at the Mathematics Department of Texas A&M University. We thank Professors R. I. Grigorchuk, V. Nekrashevych and Z. Suni´c for ˇ useful discussions and warmest hospitality.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Self-similar groups and finite Gelfand pairs
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Self-similar groups and finite Gelfand pairs
spellingShingle Self-similar groups and finite Gelfand pairs
D’Angeli, D.
Donno, A.
title_short Self-similar groups and finite Gelfand pairs
title_full Self-similar groups and finite Gelfand pairs
title_fullStr Self-similar groups and finite Gelfand pairs
title_full_unstemmed Self-similar groups and finite Gelfand pairs
title_sort self-similar groups and finite gelfand pairs
author D’Angeli, D.
Donno, A.
author_facet D’Angeli, D.
Donno, A.
publishDate 2007
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We study the Basilica group B, the iterated monodromy group I of the complex polynomial z 2 + i and the Hanoi Towers group H(3). The first two groups act on the binary rooted tree, the third one on the ternary rooted tree. We prove that the action of B, I and H(3) on each level is 2-points homogeneous with respect to the ultrametric distance. This gives rise to symmetric Gelfand pairs: we then compute the corresponding spherical functions. In the case of B and H(3) this result can also be obtained by using the strong property that the rigid stabilizers of the vertices of the first level of the tree act spherically transitively on the respective subtrees. On the other hand, this property does not hold in the case of I.
isbn 2000 Mathematics Subject Classification: 20E08, 20F65, 20F10, 05C25, 43A85, 43A90.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/157371
citation_txt Self-similar groups and finite Gelfand pairs / D. D’Angeli, A. Donno // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 54–69. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT dangelid selfsimilargroupsandfinitegelfandpairs
AT donnoa selfsimilargroupsandfinitegelfandpairs
first_indexed 2025-12-07T18:56:53Z
last_indexed 2025-12-07T18:56:53Z
_version_ 1850876953128599552