On algebraic graph theory and non-bijectivemultivariate maps in cryptography
Special family of non-bijective multivariate maps Fn of Zmⁿ into itself is constructed for n = 2,3, ... and composite m.The map F is injective on Ωn = {x|x1+x2+: : : xn ∈ Zm*} and solution of the equation Fn(x) = b, x ∈ Ωn can be reduced to the solution of equation zr = α, z ∈ Zm*, (r, φ(m)) = 1. Th...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2015 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2015
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/158006 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On algebraic graph theory and non-bijectivemultivariate maps in cryptography / V. Ustimenko // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 152–170. — Бібліогр.: 33 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Special family of non-bijective multivariate maps Fn of Zmⁿ into itself is constructed for n = 2,3, ... and composite m.The map F is injective on Ωn = {x|x1+x2+: : : xn ∈ Zm*} and solution of the equation Fn(x) = b, x ∈ Ωn can be reduced to the solution of equation zr = α, z ∈ Zm*, (r, φ(m)) = 1. The “hidden RSA cryptosystem” is proposed. Similar construction is suggested for the case Ωn = Zm*ⁿ.
|
|---|---|
| ISSN: | 1726-3255 |