Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers
Development of the engineering industry is difficult without using of heat-resistant polymer composite materials for manufacturing of machines and mechanisms parts operating at temperatures up to 300°C. For this purpose it was suggested the diphenylolsulfone formaldehyde resin as a polymer matrix, a...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут досліджень науково-технічного потенціалу та історії науки ім. Г.М. Доброва НАН України
2018
|
| Schriftenreihe: | Наука, технології, інновації |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/162628 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers / O.S. Kabat, Yu.M. Kobelchuk, D.O. Chervakov, O.V. Chervakov // Наука, технології, інновації. — 2018. — № 2 (6). — С. 48-53. — Бібліогр.: 25 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-162628 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1626282025-02-09T17:52:01Z Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers Полімерні композиційні матеріали з високим рівнем термічної стабільності на основі фенольної смоли і дисперсних діоксидів кремнію Полимерные композиционые материалы с высоким уровнем термической стабильности на основе фенольной смолы и дисперсных диоксидов кремния Kabat, O.S. Kobelchuk, Yu.M. Chervakov, D.O. Chervakov, O.V. Інформаційні технології для виробництва Development of the engineering industry is difficult without using of heat-resistant polymer composite materials for manufacturing of machines and mechanisms parts operating at temperatures up to 300°C. For this purpose it was suggested the diphenylolsulfone formaldehyde resin as a polymer matrix, and different modifications of disperse silicas — white soot WS-120 and aerosol A-380 — were selected for fillers. The developed phenoplasts have high level of thermal stability (up to 370 °C), it’s at 25–30°C is higher, then for initial resins. Apparently, this is a result of increasing of the interaction level on the boundary “polymer-disperse filler”, under the processing condition (at temperatures 170–190°C) due to appearing of covalent and hydrogen bonds between hydroxyl groups at the surface of the silica and methylol groups of the polymer matrix. Розвиток машинобудівної галузі ускладнився без використання термостійких полімерних композиційних матеріалів для деталей машин і механізмів, що працюють при температурах до 300°С. Запропоновано як полімерну матрицю обрати діфенілолсульфон-формальдегідну смолу, а в якості наповнювачів використати дисперсні кремнеземи — білу сажу марки БС-120 та аеросил марки А-380. Розроблені матеріали мають високу термічну стабільність (до 370°C), що на 25-30°C вище, ніж для ненаповненого полімеру. Такий результат проявився при збільшенні рівня взаємодії в процесі переробки на межі розподілу фаз “полімер — дисперсний наповнювач” в умовах переробки (при температурах 170–190°С) за рахунок утворення ковалентних і водневих зв’язків між гідроксильними групами на поверхні наповнювача та метилольними групами полімерної матриці. Развитие машиностроительной отрасли затруднено без использования термостойких полимерных композиционных материалов для изготовления деталей машин и механизмов, работающих при температурах до 300°С. Предложено в качестве полимерной матрицы использовать дифенилолсульфонформальдегидную смолу, а в качестве наполнителей — дисперсные кремнеземы — белую сажу марки БС-120 и аэросил марки А-380. Разработанные материалы имеют высокую термическую стабильность (до 370°C), что на 25-30°C выше, чем для ненаполненного полимера. Такой результат может быть следствием увеличения уровня взаимодействия на границе раздела фаз “полимер — дисперсный наполнитель” в условиях переработки (при температуре 170–190°С) за счет образования ковалентных и водородных связей между гидроксильными группами на поверхности наполнителя и метилольными группами полимерной матрицы. 2018 Article Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers / O.S. Kabat, Yu.M. Kobelchuk, D.O. Chervakov, O.V. Chervakov // Наука, технології, інновації. — 2018. — № 2 (6). — С. 48-53. — Бібліогр.: 25 назв. — англ. 2520-6524 https://nasplib.isofts.kiev.ua/handle/123456789/162628 541.68 en Наука, технології, інновації application/pdf Інститут досліджень науково-технічного потенціалу та історії науки ім. Г.М. Доброва НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Інформаційні технології для виробництва Інформаційні технології для виробництва |
| spellingShingle |
Інформаційні технології для виробництва Інформаційні технології для виробництва Kabat, O.S. Kobelchuk, Yu.M. Chervakov, D.O. Chervakov, O.V. Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers Наука, технології, інновації |
| description |
Development of the engineering industry is difficult without using of heat-resistant polymer composite materials for manufacturing of machines and mechanisms parts operating at temperatures up to 300°C. For this purpose it was suggested the diphenylolsulfone formaldehyde resin as a polymer matrix, and different modifications of disperse silicas — white soot WS-120 and aerosol A-380 — were selected for fillers. The developed phenoplasts have high level of thermal stability (up to 370 °C), it’s at 25–30°C is higher, then for initial resins. Apparently, this is a result of increasing of the interaction level on the boundary “polymer-disperse filler”, under the processing condition (at temperatures 170–190°C) due to appearing of covalent and hydrogen bonds between hydroxyl groups at the surface of the silica and methylol groups of the polymer matrix. |
| format |
Article |
| author |
Kabat, O.S. Kobelchuk, Yu.M. Chervakov, D.O. Chervakov, O.V. |
| author_facet |
Kabat, O.S. Kobelchuk, Yu.M. Chervakov, D.O. Chervakov, O.V. |
| author_sort |
Kabat, O.S. |
| title |
Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers |
| title_short |
Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers |
| title_full |
Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers |
| title_fullStr |
Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers |
| title_full_unstemmed |
Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers |
| title_sort |
polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers |
| publisher |
Інститут досліджень науково-технічного потенціалу та історії науки ім. Г.М. Доброва НАН України |
| publishDate |
2018 |
| topic_facet |
Інформаційні технології для виробництва |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/162628 |
| citation_txt |
Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers / O.S. Kabat, Yu.M. Kobelchuk, D.O. Chervakov, O.V. Chervakov // Наука, технології, інновації. — 2018. — № 2 (6). — С. 48-53. — Бібліогр.: 25 назв. — англ. |
| series |
Наука, технології, інновації |
| work_keys_str_mv |
AT kabatos polymercompositematerialswithahighlevelofthermalstabilitybasedonphenolicresinsanddispersesilicafillers AT kobelchukyum polymercompositematerialswithahighlevelofthermalstabilitybasedonphenolicresinsanddispersesilicafillers AT chervakovdo polymercompositematerialswithahighlevelofthermalstabilitybasedonphenolicresinsanddispersesilicafillers AT chervakovov polymercompositematerialswithahighlevelofthermalstabilitybasedonphenolicresinsanddispersesilicafillers AT kabatos polímerníkompozicíjnímateríalizvisokimrívnemtermíčnoístabílʹnostínaosnovífenolʹnoísmoliídispersnihdíoksidívkremníû AT kobelchukyum polímerníkompozicíjnímateríalizvisokimrívnemtermíčnoístabílʹnostínaosnovífenolʹnoísmoliídispersnihdíoksidívkremníû AT chervakovdo polímerníkompozicíjnímateríalizvisokimrívnemtermíčnoístabílʹnostínaosnovífenolʹnoísmoliídispersnihdíoksidívkremníû AT chervakovov polímerníkompozicíjnímateríalizvisokimrívnemtermíčnoístabílʹnostínaosnovífenolʹnoísmoliídispersnihdíoksidívkremníû AT kabatos polimernyekompozicionyematerialysvysokimurovnemtermičeskojstabilʹnostinaosnovefenolʹnojsmolyidispersnyhdioksidovkremniâ AT kobelchukyum polimernyekompozicionyematerialysvysokimurovnemtermičeskojstabilʹnostinaosnovefenolʹnojsmolyidispersnyhdioksidovkremniâ AT chervakovdo polimernyekompozicionyematerialysvysokimurovnemtermičeskojstabilʹnostinaosnovefenolʹnojsmolyidispersnyhdioksidovkremniâ AT chervakovov polimernyekompozicionyematerialysvysokimurovnemtermičeskojstabilʹnostinaosnovefenolʹnojsmolyidispersnyhdioksidovkremniâ |
| first_indexed |
2025-11-29T01:54:11Z |
| last_indexed |
2025-11-29T01:54:11Z |
| _version_ |
1850087846635896832 |
| fulltext |
Science, technologieS, innovationS • 2018, № 248
UDC 541.68
o.S. kabat, yu.m. kobelchuk, d.o. chervakov, o.v. chervakov
Polymer comPoSite materialS with a high
level of thermal Stability baSed on Phenolic
reSinS and diSPerSe Silica fillerS
Abstract. Development of the engineering industry is difficult without using of heat-resistant polymer composite
materials for manufacturing of machines and mechanisms parts operating at temperatures up to 300°C. For this
purpose it was suggested the diphenylolsulfone formaldehyde resin as a polymer matrix, and different modifi-
cations of disperse silicas — white soot WS-120 and aerosol A-380 — were selected for fillers. The developed
phenoplasts have high level of thermal stability (up to 370 oC), it’s at 25–30°C is higher, then for initial resins. Ap-
parently, this is a result of increasing of the interaction level on the boundary “polymer-disperse filler”, under the
processing condition (at temperatures 170–190°C) due to appearing of covalent and hydrogen bonds between
hydroxyl groups at the surface of the silica and methylol groups of the polymer matrix.
Keywords: polymeric composite materials, thermal stability, phenoplasts, silica fillers.
introduction
Development of the engineering industry is dif-
ficult without using of heat-resistant polymer com-
posite materials for manufacturing of machines
and mechanisms parts operating at temperatures
up to 300°C. The main factor that limits the appli-
cation of well-known polymer-based materials is
the significant change in the complex of physical
and mechanical properties of the products during
their use under enhanced temperatures. Therefore,
the relevance of the problem is to create polymer
composite materials (PCM) that can provide the
stable performance of machines and mechanisms
units at temperatures up to 300°C.
To create these, the materials selection of a
polymer matrix and filler with high thermal proper-
ties is needed. The most common heat resistant
polymers include — fluoropolymers, polyimides,
aromatic polyamides, polyesterketones and phe-
nolic resin [1–4]. Based on them the PCM which
are filled with reinforcing fibers and disperse fill-
ers got different morphology and nature, they can
withstand temperatures up to 300°C without under-
going chemical degradation [5–19]. However, most
of them are hard in processing into products; also
they have the scarcity of the starting components
and consequently high costs. The greatest interest
among the heat-resistant polymers are phenolic,
which are due to the prevalence of the initial com-
ponents, together with relatively simple synthesis
technology, processing into products and low cost
are still promising materials for the creation of PCM
with a high level of thermal stability.
materialS and methodS
materials. As polymer matrix was chosen a
diphenylolsulfone formaldehyde (DFSFR) resin,
developed and synthesized under the Department
of Technologies of nature and synthetic polymers,
fats and foods in SHEI “Ukrainian State University
of Chemical Engineering” (Dnipro City, Ukraine).
This product has a high level of thermal, physical
and mechanical properties, low cost, wide dis-
tribution of the starting components and greater
environmental safety than the classical phenol-
formaldehyde resins [20].
The structural formula for DFSFR resin is
shown in fig. 1.
As fillers was chosen the next disperse silica:
white soot (WS-120) of WS-120 type (GOST 18307-
78), Ukraine; AEROSIL A-380 (A-380), Evonic De-
gussa, Germany [21; 22].
WS-120 is a silica, precipitated by reacting so-
dium silicate with sulfuric or hydrochloric acid, and
it has the following characteristics: average par-
ticle size — 19–27 nm, the silica mass fraction —
at least 87%, mass fraction of moisture — not less
than 6.5%.
A-380 is silica obtained by flame hydrolysis
of silicon tetrachloride, and it has the following
characteristics: average particle size — 5–15 nm,
Серія: ТЕХНІЧНІ НАУКИ
fig. 1. The structural formula of DFSFR
інформаційні технології Для ВиробництВа
informational technologieS for Production 49
the mass fraction of silicon dioxide — not less than
95%, mass fraction of moisture — not more than
1.5%.
methods of Pcm obtaining. The combina-
tion of components was conducted by impregnat-
ing an aqueous solution of the particulate filler
DFSFR and further mixing them at a high-speed
mechanical mixer until a suspension with uniformly
distributed in the volume of the filler particles DFS-
FR. Drying of the mixture was carried to a constant
weight in vacuum at 22–25°С. Grinding of the dried
composition was performed on a high-speed pad-
dle type mixer to a particle size of 40–70 microns.
Palletization of obtained composition was done
in molds at a pressure of 80 MPa. Standard test
samples were prepared by compression molding
at a temperature of 175±3°C with the pressure of
40 MPa and exposure material under pressure for
3 min at 1 mm thickness of the sample.
research methods. The morphology inves-
tigation of filler surface and PCM were performed
by using electron microscopes Superprobe-733
(Jeol) and SEM-106I. Thermal stability of PCM
was measured by thermogravimetric analysis in
accordance with ISO-11358 using derivatograph
TA Instruments TGA Q-50.Infrared spectra of fillers
and developed PCM were obtained by spectro-
photometer SPECORD 75-IR.
diScuSSion of reSearch reSultS
It is well known [2] that the introducing of in-
organic fillers to the phenolic resin in most cases
increases of thermal properties of the PCM. How-
ever, the nature and structure of the particulate
filler strongly affect the change of thermal and
physical mechanical properties of PCM. To achieve
a high level of complex thermal physical and me-
chanical properties of PCM filler must be thermally
stable at high temperatures and must have high
adhesion to the polymer matrix, creating a strong
bond at the interface "polymer-dispersed filler".
As a fillers we used the mineral materials based
on silica with high surface area (to 380 m2/g) and
average particle size of 30 nm, which can ensure
a high level of adhesion at the interface interaction
"polymer-particulate filler" phase boundary.
The original form of the filler particles by
electrostatic and Van der Waals forces are drawn,
forming the agglomerates with sizes in the tens of
micro meters (fig. 2). Agglomeration of the filler re-
duces the area of contact at the interface between
the phases "polymer-particulate filler", which turn
reduces the level of interaction between them. The
presence of such structures in the PCM will also
have a negative role on the level of physical and
mechanical properties as mechanical destruction
will occur to these agglomerates as micro-defects.
To create PCM with a high level of physical me-
chanical properties it is necessary to break the
agglomerates of silica.
In the process of combining the components
at their processing on high-speed mechanical stir-
rer was able to reduce and partially to destroy the
silica agglomerates. As we can see from the micro-
graphs on the surfaces studied PCM agglomerates
occur fillers to 20–30 microns in size (fig. 3b).
It should be noted that a further reduction in
the size of the fillers agglomerates appropriable
but practically difficult feasible with using the clas-
sical method of phenolic plastics processing and
it is a factor in the reduction in process-ability with
increased material costs while creating PCM.
It is known [1] that the quantitative characte-
ristic of the thermal stability of polymers and PCM
based on them is the temperature at which their
active destruction begins. To determine the initial
fig. 2. Microphotographs of silica fillers: a — WS-120; b — A-380
a b
наука, технології, інноВації • 2018, № 2
Science, technologieS, innovationS • 2018, № 250
active polymer degradation DFSFR and PCM based
on it was carried out thermogravimetric analysis.
The results are shown in fig. 4.
From the obtained data we can see that the
thermogravimetric curves of the original DFSFR
and PCM based on it have a similar character. So at
temperatures from 50 to 180°C there is weight loss
associated with the removal of free and adhesive
water. At temperatures of 180 to 340°C mass loss
rate decreases. In this range the loss of weight
associated with PCM phenolic residue removing
unreacted components. With 340 to 370°C inten-
sity of weight loss increases it is active phase of
thermal destruction.
With increasing the filler content in DFSFR,
active destruction onset temperature is shifted to
higher temperatures. This phenomenon is charac-
teristic for PCM filled with WS-120 (fig. 4a), and
filled with A-380 (fig. 4b). It should be noted that
the heat resistance of composites filled by WS-120
at 10–15°C is higher than the composites filled by
A-380.
Increased thermal stability by developed PCM
may be result of physical or chemical interaction
between filler and polymer matrix.
The table 1 presents data describing the ef-
fect of silica content in PCM on physical-mechan-
ical properties.
It seen that, the introduction of silica dioxide to
DFSFR are provide to increasing of a hardness (up
to 154 MPa for the sample containing of 60 wt.%
DFSFR and 40 wt.% WS-120) and compressive
strength at yield (up to 154 MPa for the sample
containing of 80 wt.% DFSFR and 20 wt.% WS-
120). A developed materials got improved ther-
mal stability due to operation under enhanced
fig. 3. Microphotographs of the surface of the original (a) and DFSFR filled by WS-120 (b)
a
a
b
b
fig. 4. Thermogravimetric curves (heat rate 10°C/min) of PCM based on DFSFR filled with (a) WS-120
and (b) A-380 (the degree of filling: 1 — 0 wt.%; 2 — 20 wt.%; 3 — 40 wt.%; 4 — 60 wt.%; 5 — 80 wt.%)
W
ei
gh
t,
%
0 50 200 300 400 500
Temperature, °C
100 150 250 400350
50
60
70
80
90
100
1
2
3
4
5
W
ei
gh
t,
%
0 50 200 300 400 500
Temperature, °C
100 150 250 400350
50
60
70
80
90
100
1
2
3
4
5
інформаційні технології Для ВиробництВа
informational technologieS for Production 51
Table 1
Physical-mechanical properties of Pcm based on dfSfr filled by silica
composition
the degree
of filling wt.%
the properties
density kg/m3 compression strength
at yield, mPa
hardness, mPa
DFSFR 0 1450 171 132
DFSFR + WS-120
20 1547 179 150
40 1650 154 154
60 1744 89 129
80 1840 54 110
DFSFR + A-380
20 1540 140 144
40 1630 60 143
60 1725 20 120
80 1420 14 107
temperatures (from 300°C for initial DFSFR up to
350°C for PCM containing a of 60 wt.% DFSFR and
40 wt.% WS-120). Its need to note that the complex
of physic-mechanical properties of developed PCM
which filled by WS-120 its higher then for A-380, its
can be a result of a higher content of a functional
groups on the surface of a WS-120 and as a large
surface area of that filler then for A-380.
It is known that due to processing of phenolic
resin which are filled with dispersed materials, was
observed an interaction between the functional
groups on the surface of filler and polymer matrix
[23]. In our case, on the surface of the silica, are
large numbers of hydroxyl groups chemically bond-
ed to silicon atoms [24], which can form chemical
bonds with the polymer matrix during the process-
ing. To confirm this assumption, was conducted a
study by infrared spectroscopy (fig. 5).
In the infrared spectra of the materials an ab-
sorption rate is presented which is specific for sili-
cas in: 1050–1210 cm–1 area, which is responsible
for antisymmetric fluctuations Si-O bonds in Si-O-Si
of tetrahedron; 800–810 cm–1, which character-
izes the symmetric vibrations of tetrahedron SiO2;
965–974 cm–1, and responding to the wobble Si-O
bonds in Si-OH; 3430–3440 and 1620–1640 cm–1,
which describes the stretching and deformation
vibrations of bound and free hydroxyl groups.
It is known [25] that the presence of hydroxyl
groups on the filler surface promotes the formation
of hydrogen bonds with the polymer matrix more
electronegative atoms due to PCM processing.
fig. 5. IR spectra of silica oxide: 1 — WS-120;
2 — A-380
fig. 6. IR spectra of PCM (60% DFSFR + 40%
filler) filled with silica: 1 — WS-120; 2 — A-380
T, %
4000 3000 2000 1500 1000 500
Wavenumber, cm–1
2
1 T, %
4000 3000 2000 1500 1000 500
Wavenumber, cm–1
2
1
наука, технології, інноВації • 2018, № 2
Science, technologieS, innovationS • 2018, № 252
To confirm the characteristics of the chemical
formation of bonds between the polymer matrix
and filler we carried out the spectroscopic study
of PCM based DFSFR filled with silica (fig. 6).
In the IR spectra of the PCM, there are intense
absorption peaks in the 3430–3450 and 1610–
1640 cm–1, they describe the stretching and de-
formation vibrations of free and associated groups
(–OH).
It should be noted that the intensity of ab-
sorption peaks in the region 3430–3450 from
PCM with WS-120 and A-380 is different. More
intensive absorption peak observed for PCM filled
by WS-120, it indicates the formation of a larg-
er number of hydrogen bonds between the filler
surface and polymer matrix. Such a hypothesis is
correlated with the results of thermogravimetric
analysis and it is likely the result of more intensive
interaction at the interface “polymer – disperse
filler”.
concluSion
It was established that the PCM based on
DFSFR and silica got the high level of thermal sta-
bility. It was found that the content in DFSFR of
silicas shifts the temperature of the active destruc-
tion of PCM toward higher temperatures. Since the
heat resistance of developed polymer composites
25–30°С is more than for the initial polymer has
and it achieves 370°С. Apparently, this is result of
increasing the level of interaction on the boundary
“polymer-disperse filler”, at the processing condi-
tion (temperature 170–190°C) due to appearing of
covalent and hydrogen bonds between hydroxyl
groups on the surface of silica and methylol groups
of the polymer matrix.
referenceS/
СПиСок ВикориСтаних Джерел
1. Encyclopedia of polymers. Vol. 3. Head. Ed. V.A. Kar-
gin. Moscow (in Russ.): Soviet Encyclopedia, 1972,
1152 p.
2. Mihailin Y.A. Thermostable polymers and polymeric
materials. SPb.: Profession, 2006, 627 p.
3. Buller K.-U. Heat and heat-resistant polymers.
Ed. Y.S. Vugonskoy. Moscow (in Russ.): Chemistry,
1984, 1056 p.
4. Korshak V.V. Resistant polymers. Moscow (in Russ.):
Nauka, 1969, 381 p.
5. He Y., Walsh D., Shi C. (2015) Fluoropolymer com-
posite coating for condensing heat exchangers:
Characterization of the mechanical, tribological and
thermal properties. Applied Thermal Engineering,
Vol. 91, рр. 387–398.
6. Adamenko N.A., Kazurov A.V., Agafonov G.B. (2006)
Heat-resistant polymer composite materials ob-
tained by explosive pressing. Chemistry and Chemi-
cal Engineering, Vol. 49, рр. 123–124.
7. Golchina Ar., Simmonsa G.F., Glavatskiha S.B.
(2012) Break-away friction of PTFE materials in lub-
ricated conditions. Tribology International, Vol. 48,
рр. 54–62.
8. Ünlüa B.S., Atikb E., Köksalb S. (2009) Tribologi-
cal properties of polymer-based journal bearings.
Materials&Design, Vol. 30, рр. 2618–2622.
9. Dudka A.M., Sutar V.I., Nachovnuy I.I. (2010) Re-
search of tribotechnical performance polymer
composites for thermally loaded friction units of
machines and apparatus of chemical equipment.
Questions of chemistry and chemical technology,
Vol. 6, рр. 148-151.
10. Meisam S., Mohsen H., Mehdi R. (2015) Synthesis
of a novel CNT/polyamide composite containing
phosphine oxide groups and its flame retardancy
and thermal properties. New Carbon Materials,
Vol. 30, рр. 397–403.
11. Kabat O.S., Sitar V.І. (2016) Resistant composites
based on phenylone C2 with a high level of work-
ability during processing into products. Questions
of chemistry and chemical technology, Vol. 3 (107),
рр. 60–64.
12. Sytar V.I., Burya A.I. Burmistr M.V. and oth. (2005)
Structural and tribotechnical plastics based on
phenylone. Proceedings of the 5th anniversary of
Industrial Conference ”Efficiency implementation
of scientific, resource and industrial potential in
modern conditions”, рр. 317–320.
13. Sіrenko G.O., Svіdersky V.P., Bazyuk L.B. (2005)
Thermal properties of composite materials based
on aromatic polyimide, graphite-filled. Polymer
Journal, Vol. 27, рр. 272–277.
14. Fengxia D., Guoliang H., Fengxiang C. and oth.
(2016) The lubricity and reinforcement of carbon
fibers in polyimide at high temperatures. Tribology
International, Vol. 101, рр. 291–300.
15. Hazbulatova Z.S., Asuev L.A., Nasurova M.A. (2010)
Aromatic polyketones (review). Plastics, Vol. 2,
рр. 32–38.
16. Koikea H., Kidab K., Mizobeb K. and oth. (2015)
Wear of hybrid radial bearings (PEEK ring-PTFE re-
tainer and alumina balls) under dry rolling contact.
Tribology International, Vol 90, рр. 77–83.
17. Wang Z., Gao D. (2013) Comparative investigation
on the tribological behavior of reinforced plastic
composite under natural seawater lubrication.
Materials&Design, Vol. 51, рр. 983–988.
18. Lipko O.O., Burmistr M.V., Kobelchuk Y.M. and oth.
(2015) New water-soluble thermosetting binders
for Pressed materials. Questions of chemistry and
chemical technology, Vol. 6, рр. 66–73.
19. Podgorny E.V., Dembitsky O.E., Kabat O.S., Cher-
vakov O.V. etc. (2015) Polymer composites based
on diphenylolpropane-formaldehyde polymer, sili-
ca and titanium. VIIth International conference of
chemistry and modern technology "IncHemTec",
Vol. 4, рр. 149.
20. Golub К. С., Chapoval Y.M., Kobelchuk Y.M. (2015)
New resol resins based on bisphenol A and their
composites with application. VII-th International
conference of chemistry and modern technology
"IncHemTec", Vol. 4, рр. 128–129.
21. GOST 18307-78. Carbon white. Moscow (in Russ.):
Publishing House of Standards, 1988, 21 p.
22. GOST 14922-77. Aerosil. Moscow (in Russ.): Pub-
lishing House of Standards, 1977, 21 p.
23. Tager A.A. Physical chemistry of polymers. Moscow
(in Russ.): Chemistry, 1968, 536 p.
24. Chukin G.D. Chemistry of surface and structure of
the dispersed silica. Moscow (in Russ.): Printing
Paladin, OOO "PRINT", 2008, 172 p.
25. Moscow V.V. (1999) Hydrogen bonding in orga-
nic chemistry. Soros Educational Journal, Vol. 2,
рр. 58–64.
інформаційні технології Для ВиробництВа
informational technologieS for Production 53
о.С. кабат, Ю.м. кобельчук, Д.о. черваков, о.В. черваков
Полімерні комПозиційні матеріали з ВиСоким ріВнем термічної СтабільноСті
на оСноВі фенольної Смоли і ДиСПерСних ДіокСиДіВ кремніЮ
Резюме. Розвиток машинобудівної галузі ускладнився без використання термостійких полімерних компо-
зиційних матеріалів для деталей машин і механізмів, що працюють при температурах до 300°С. Запропо-
новано як полімерну матрицю обрати діфенілолсульфон-формальдегідну смолу, а в якості наповнювачів
використати дисперсні кремнеземи — білу сажу марки БС-120 та аеросил марки А-380. Розроблені матері-
али мають високу термічну стабільність (до 370°C), що на 25-30°C вище, ніж для ненаповненого полімеру.
Такий результат проявився при збільшенні рівня взаємодії в процесі переробки на межі розподілу фаз “по-
лімер — дисперсний наповнювач” в умовах переробки (при температурах 170–190°С) за рахунок утворення
ковалентних і водневих зв’язків між гідроксильними групами на поверхні наповнювача та метилольними
групами полімерної матриці.
Ключові слова: полімерні композиційні матеріали, термічна стабільність, фенопласти, наповнювачі з
кремнезема.
о.С. кабат, Ю.м. кобельчук, Д.о. черваков, о.В. черваков
Полимерные комПозиционные материалы С ВыСоким уроВнем
термичеСкой СтабильноСти на оСноВе фенольной Смолы
и ДиСПерСных ДиокСиДоВ кремния
Резюме. Развитие машиностроительной отрасли затруднено без использования термостойких поли-
мерных композиционных материалов для изготовления деталей машин и механизмов, работающих при
температурах до 300°С. Предложено в качестве полимерной матрицы использовать дифенилолсульфон-
формальдегидную смолу, а в качестве наполнителей — дисперсные кремнеземы — белую сажу марки
БС-120 и аэросил марки А-380. Разработанные материалы имеют высокую термическую стабильность (до
370°C), что на 25-30°C выше, чем для ненаполненного полимера. Такой результат может быть следствием
увеличения уровня взаимодействия на границе раздела фаз “полимер — дисперсный наполнитель” в усло-
виях переработки (при температуре 170–190°С) за счет образования ковалентных и водородных связей
между гидроксильными группами на поверхности наполнителя и метилольными группами полимерной
матрицы.
Ключевые слова: полимерные композиционные материалы, термическая стабильность, фенопласты, на-
полнители из кремнезема.
information about the authorS
kabat o.S., kobelchuk yu.m., chervakov d.o., chervakov o.v. — Ukrainian State University of Chemical
Engineering, 8, Нaharin Ave., Dnipro, Ukraine, 49005
інформація Про аВторіВ
кабат о.С., кобельчук Ю.м., черваков Д.о., черваков о.В. — Український державний хіміко-технологіч-
ний університет, пр. Гагаріна, 8, м. Дніпро, Україна, 49005
информация об аВторах
кабат о.С., кобельчук Ю.м., черваков Д.о., черваков о.В. — Украинский государственный химико-
технологический университет, пр. Гагарина, 8, г. Днепр, Украина, 49005
|