Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers

Development of the engineering industry is difficult without using of heat-resistant polymer composite materials for manufacturing of machines and mechanisms parts operating at temperatures up to 300°C. For this purpose it was suggested the diphenylolsulfone formaldehyde resin as a polymer matrix, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Kabat, O.S., Kobelchuk, Yu.M., Chervakov, D.O., Chervakov, O.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут досліджень науково-технічного потенціалу та історії науки ім. Г.М. Доброва НАН України 2018
Schriftenreihe:Наука, технології, інновації
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/162628
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers / O.S. Kabat, Yu.M. Kobelchuk, D.O. Chervakov, O.V. Chervakov // Наука, технології, інновації. — 2018. — № 2 (6). — С. 48-53. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-162628
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1626282025-02-09T17:52:01Z Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers Полімерні композиційні матеріали з високим рівнем термічної стабільності на основі фенольної смоли і дисперсних діоксидів кремнію Полимерные композиционые материалы с высоким уровнем термической стабильности на основе фенольной смолы и дисперсных диоксидов кремния Kabat, O.S. Kobelchuk, Yu.M. Chervakov, D.O. Chervakov, O.V. Інформаційні технології для виробництва Development of the engineering industry is difficult without using of heat-resistant polymer composite materials for manufacturing of machines and mechanisms parts operating at temperatures up to 300°C. For this purpose it was suggested the diphenylolsulfone formaldehyde resin as a polymer matrix, and different modifications of disperse silicas — white soot WS-120 and aerosol A-380 — were selected for fillers. The developed phenoplasts have high level of thermal stability (up to 370 °C), it’s at 25–30°C is higher, then for initial resins. Apparently, this is a result of increasing of the interaction level on the boundary “polymer-disperse filler”, under the processing condition (at temperatures 170–190°C) due to appearing of covalent and hydrogen bonds between hydroxyl groups at the surface of the silica and methylol groups of the polymer matrix. Розвиток машинобудівної галузі ускладнився без використання термостійких полімерних композиційних матеріалів для деталей машин і механізмів, що працюють при температурах до 300°С. Запропоновано як полімерну матрицю обрати діфенілолсульфон-формальдегідну смолу, а в якості наповнювачів використати дисперсні кремнеземи — білу сажу марки БС-120 та аеросил марки А-380. Розроблені матеріали мають високу термічну стабільність (до 370°C), що на 25-30°C вище, ніж для ненаповненого полімеру. Такий результат проявився при збільшенні рівня взаємодії в процесі переробки на межі розподілу фаз “полімер — дисперсний наповнювач” в умовах переробки (при температурах 170–190°С) за рахунок утворення ковалентних і водневих зв’язків між гідроксильними групами на поверхні наповнювача та метилольними групами полімерної матриці. Развитие машиностроительной отрасли затруднено без использования термостойких полимерных композиционных материалов для изготовления деталей машин и механизмов, работающих при температурах до 300°С. Предложено в качестве полимерной матрицы использовать дифенилолсульфонформальдегидную смолу, а в качестве наполнителей — дисперсные кремнеземы — белую сажу марки БС-120 и аэросил марки А-380. Разработанные материалы имеют высокую термическую стабильность (до 370°C), что на 25-30°C выше, чем для ненаполненного полимера. Такой результат может быть следствием увеличения уровня взаимодействия на границе раздела фаз “полимер — дисперсный наполнитель” в условиях переработки (при температуре 170–190°С) за счет образования ковалентных и водородных связей между гидроксильными группами на поверхности наполнителя и метилольными группами полимерной матрицы. 2018 Article Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers / O.S. Kabat, Yu.M. Kobelchuk, D.O. Chervakov, O.V. Chervakov // Наука, технології, інновації. — 2018. — № 2 (6). — С. 48-53. — Бібліогр.: 25 назв. — англ. 2520-6524 https://nasplib.isofts.kiev.ua/handle/123456789/162628 541.68 en Наука, технології, інновації application/pdf Інститут досліджень науково-технічного потенціалу та історії науки ім. Г.М. Доброва НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Інформаційні технології для виробництва
Інформаційні технології для виробництва
spellingShingle Інформаційні технології для виробництва
Інформаційні технології для виробництва
Kabat, O.S.
Kobelchuk, Yu.M.
Chervakov, D.O.
Chervakov, O.V.
Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers
Наука, технології, інновації
description Development of the engineering industry is difficult without using of heat-resistant polymer composite materials for manufacturing of machines and mechanisms parts operating at temperatures up to 300°C. For this purpose it was suggested the diphenylolsulfone formaldehyde resin as a polymer matrix, and different modifications of disperse silicas — white soot WS-120 and aerosol A-380 — were selected for fillers. The developed phenoplasts have high level of thermal stability (up to 370 °C), it’s at 25–30°C is higher, then for initial resins. Apparently, this is a result of increasing of the interaction level on the boundary “polymer-disperse filler”, under the processing condition (at temperatures 170–190°C) due to appearing of covalent and hydrogen bonds between hydroxyl groups at the surface of the silica and methylol groups of the polymer matrix.
format Article
author Kabat, O.S.
Kobelchuk, Yu.M.
Chervakov, D.O.
Chervakov, O.V.
author_facet Kabat, O.S.
Kobelchuk, Yu.M.
Chervakov, D.O.
Chervakov, O.V.
author_sort Kabat, O.S.
title Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers
title_short Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers
title_full Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers
title_fullStr Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers
title_full_unstemmed Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers
title_sort polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers
publisher Інститут досліджень науково-технічного потенціалу та історії науки ім. Г.М. Доброва НАН України
publishDate 2018
topic_facet Інформаційні технології для виробництва
url https://nasplib.isofts.kiev.ua/handle/123456789/162628
citation_txt Polymer composite materials with a high level of thermal stability based on phenolic resins and disperse silica fillers / O.S. Kabat, Yu.M. Kobelchuk, D.O. Chervakov, O.V. Chervakov // Наука, технології, інновації. — 2018. — № 2 (6). — С. 48-53. — Бібліогр.: 25 назв. — англ.
series Наука, технології, інновації
work_keys_str_mv AT kabatos polymercompositematerialswithahighlevelofthermalstabilitybasedonphenolicresinsanddispersesilicafillers
AT kobelchukyum polymercompositematerialswithahighlevelofthermalstabilitybasedonphenolicresinsanddispersesilicafillers
AT chervakovdo polymercompositematerialswithahighlevelofthermalstabilitybasedonphenolicresinsanddispersesilicafillers
AT chervakovov polymercompositematerialswithahighlevelofthermalstabilitybasedonphenolicresinsanddispersesilicafillers
AT kabatos polímerníkompozicíjnímateríalizvisokimrívnemtermíčnoístabílʹnostínaosnovífenolʹnoísmoliídispersnihdíoksidívkremníû
AT kobelchukyum polímerníkompozicíjnímateríalizvisokimrívnemtermíčnoístabílʹnostínaosnovífenolʹnoísmoliídispersnihdíoksidívkremníû
AT chervakovdo polímerníkompozicíjnímateríalizvisokimrívnemtermíčnoístabílʹnostínaosnovífenolʹnoísmoliídispersnihdíoksidívkremníû
AT chervakovov polímerníkompozicíjnímateríalizvisokimrívnemtermíčnoístabílʹnostínaosnovífenolʹnoísmoliídispersnihdíoksidívkremníû
AT kabatos polimernyekompozicionyematerialysvysokimurovnemtermičeskojstabilʹnostinaosnovefenolʹnojsmolyidispersnyhdioksidovkremniâ
AT kobelchukyum polimernyekompozicionyematerialysvysokimurovnemtermičeskojstabilʹnostinaosnovefenolʹnojsmolyidispersnyhdioksidovkremniâ
AT chervakovdo polimernyekompozicionyematerialysvysokimurovnemtermičeskojstabilʹnostinaosnovefenolʹnojsmolyidispersnyhdioksidovkremniâ
AT chervakovov polimernyekompozicionyematerialysvysokimurovnemtermičeskojstabilʹnostinaosnovefenolʹnojsmolyidispersnyhdioksidovkremniâ
first_indexed 2025-11-29T01:54:11Z
last_indexed 2025-11-29T01:54:11Z
_version_ 1850087846635896832
fulltext Science, technologieS, innovationS • 2018, № 248 UDC 541.68 o.S. kabat, yu.m. kobelchuk, d.o. chervakov, o.v. chervakov Polymer comPoSite materialS with a high level of thermal Stability baSed on Phenolic reSinS and diSPerSe Silica fillerS Abstract. Development of the engineering industry is difficult without using of heat-resistant polymer composite materials for manufacturing of machines and mechanisms parts operating at temperatures up to 300°C. For this purpose it was suggested the diphenylolsulfone formaldehyde resin as a polymer matrix, and different modifi- cations of disperse silicas — white soot WS-120 and aerosol A-380 — were selected for fillers. The developed phenoplasts have high level of thermal stability (up to 370 oC), it’s at 25–30°C is higher, then for initial resins. Ap- parently, this is a result of increasing of the interaction level on the boundary “polymer-disperse filler”, under the processing condition (at temperatures 170–190°C) due to appearing of covalent and hydrogen bonds between hydroxyl groups at the surface of the silica and methylol groups of the polymer matrix. Keywords: polymeric composite materials, thermal stability, phenoplasts, silica fillers. introduction Development of the engineering industry is dif- ficult without using of heat-resistant polymer com- posite materials for manufacturing of machines and mechanisms parts operating at temperatures up to 300°C. The main factor that limits the appli- cation of well-known polymer-based materials is the significant change in the complex of physical and mechanical properties of the products during their use under enhanced temperatures. Therefore, the relevance of the problem is to create polymer composite materials (PCM) that can provide the stable performance of machines and mechanisms units at temperatures up to 300°C. To create these, the materials selection of a polymer matrix and filler with high thermal proper- ties is needed. The most common heat resistant polymers include — fluoropolymers, polyimides, aromatic polyamides, polyesterketones and phe- nolic resin [1–4]. Based on them the PCM which are filled with reinforcing fibers and disperse fill- ers got different morphology and nature, they can withstand temperatures up to 300°C without under- going chemical degradation [5–19]. However, most of them are hard in processing into products; also they have the scarcity of the starting components and consequently high costs. The greatest interest among the heat-resistant polymers are phenolic, which are due to the prevalence of the initial com- ponents, together with relatively simple synthesis technology, processing into products and low cost are still promising materials for the creation of PCM with a high level of thermal stability. materialS and methodS materials. As polymer matrix was chosen a diphenylolsulfone formaldehyde (DFSFR) resin, developed and synthesized under the Department of Technologies of nature and synthetic polymers, fats and foods in SHEI “Ukrainian State University of Chemical Engineering” (Dnipro City, Ukraine). This product has a high level of thermal, physical and mechanical properties, low cost, wide dis- tribution of the starting components and greater environmental safety than the classical phenol- formaldehyde resins [20]. The structural formula for DFSFR resin is shown in fig. 1. As fillers was chosen the next disperse silica: white soot (WS-120) of WS-120 type (GOST 18307- 78), Ukraine; AEROSIL A-380 (A-380), Evonic De- gussa, Germany [21; 22]. WS-120 is a silica, precipitated by reacting so- dium silicate with sulfuric or hydrochloric acid, and it has the following characteristics: average par- ticle size — 19–27 nm, the silica mass fraction — at least 87%, mass fraction of moisture — not less than 6.5%. A-380 is silica obtained by flame hydrolysis of silicon tetrachloride, and it has the following characteristics: average particle size — 5–15 nm, Серія: ТЕХНІЧНІ НАУКИ fig. 1. The structural formula of DFSFR інформаційні технології Для ВиробництВа informational technologieS for Production 49 the mass fraction of silicon dioxide — not less than 95%, mass fraction of moisture — not more than 1.5%. methods of Pcm obtaining. The combina- tion of components was conducted by impregnat- ing an aqueous solution of the particulate filler DFSFR and further mixing them at a high-speed mechanical mixer until a suspension with uniformly distributed in the volume of the filler particles DFS- FR. Drying of the mixture was carried to a constant weight in vacuum at 22–25°С. Grinding of the dried composition was performed on a high-speed pad- dle type mixer to a particle size of 40–70 microns. Palletization of obtained composition was done in molds at a pressure of 80 MPa. Standard test samples were prepared by compression molding at a temperature of 175±3°C with the pressure of 40 MPa and exposure material under pressure for 3 min at 1 mm thickness of the sample. research methods. The morphology inves- tigation of filler surface and PCM were performed by using electron microscopes Superprobe-733 (Jeol) and SEM-106I. Thermal stability of PCM was measured by thermogravimetric analysis in accordance with ISO-11358 using derivatograph TA Instruments TGA Q-50.Infrared spectra of fillers and developed PCM were obtained by spectro- photometer SPECORD 75-IR. diScuSSion of reSearch reSultS It is well known [2] that the introducing of in- organic fillers to the phenolic resin in most cases increases of thermal properties of the PCM. How- ever, the nature and structure of the particulate filler strongly affect the change of thermal and physical mechanical properties of PCM. To achieve a high level of complex thermal physical and me- chanical properties of PCM filler must be thermally stable at high temperatures and must have high adhesion to the polymer matrix, creating a strong bond at the interface "polymer-dispersed filler". As a fillers we used the mineral materials based on silica with high surface area (to 380 m2/g) and average particle size of 30 nm, which can ensure a high level of adhesion at the interface interaction "polymer-particulate filler" phase boundary. The original form of the filler particles by electrostatic and Van der Waals forces are drawn, forming the agglomerates with sizes in the tens of micro meters (fig. 2). Agglomeration of the filler re- duces the area of contact at the interface between the phases "polymer-particulate filler", which turn reduces the level of interaction between them. The presence of such structures in the PCM will also have a negative role on the level of physical and mechanical properties as mechanical destruction will occur to these agglomerates as micro-defects. To create PCM with a high level of physical me- chanical properties it is necessary to break the agglomerates of silica. In the process of combining the components at their processing on high-speed mechanical stir- rer was able to reduce and partially to destroy the silica agglomerates. As we can see from the micro- graphs on the surfaces studied PCM agglomerates occur fillers to 20–30 microns in size (fig. 3b). It should be noted that a further reduction in the size of the fillers agglomerates appropriable but practically difficult feasible with using the clas- sical method of phenolic plastics processing and it is a factor in the reduction in process-ability with increased material costs while creating PCM. It is known [1] that the quantitative characte- ristic of the thermal stability of polymers and PCM based on them is the temperature at which their active destruction begins. To determine the initial fig. 2. Microphotographs of silica fillers: a — WS-120; b — A-380 a b наука, технології, інноВації • 2018, № 2 Science, technologieS, innovationS • 2018, № 250 active polymer degradation DFSFR and PCM based on it was carried out thermogravimetric analysis. The results are shown in fig. 4. From the obtained data we can see that the thermogravimetric curves of the original DFSFR and PCM based on it have a similar character. So at temperatures from 50 to 180°C there is weight loss associated with the removal of free and adhesive water. At temperatures of 180 to 340°C mass loss rate decreases. In this range the loss of weight associated with PCM phenolic residue removing unreacted components. With 340 to 370°C inten- sity of weight loss increases it is active phase of thermal destruction. With increasing the filler content in DFSFR, active destruction onset temperature is shifted to higher temperatures. This phenomenon is charac- teristic for PCM filled with WS-120 (fig. 4a), and filled with A-380 (fig. 4b). It should be noted that the heat resistance of composites filled by WS-120 at 10–15°C is higher than the composites filled by A-380. Increased thermal stability by developed PCM may be result of physical or chemical interaction between filler and polymer matrix. The table 1 presents data describing the ef- fect of silica content in PCM on physical-mechan- ical properties. It seen that, the introduction of silica dioxide to DFSFR are provide to increasing of a hardness (up to 154 MPa for the sample containing of 60 wt.% DFSFR and 40 wt.% WS-120) and compressive strength at yield (up to 154 MPa for the sample containing of 80 wt.% DFSFR and 20 wt.% WS- 120). A developed materials got improved ther- mal stability due to operation under enhanced fig. 3. Microphotographs of the surface of the original (a) and DFSFR filled by WS-120 (b) a a b b fig. 4. Thermogravimetric curves (heat rate 10°C/min) of PCM based on DFSFR filled with (a) WS-120 and (b) A-380 (the degree of filling: 1 — 0 wt.%; 2 — 20 wt.%; 3 — 40 wt.%; 4 — 60 wt.%; 5 — 80 wt.%) W ei gh t, % 0 50 200 300 400 500 Temperature, °C 100 150 250 400350 50 60 70 80 90 100 1 2 3 4 5 W ei gh t, % 0 50 200 300 400 500 Temperature, °C 100 150 250 400350 50 60 70 80 90 100 1 2 3 4 5 інформаційні технології Для ВиробництВа informational technologieS for Production 51 Table 1 Physical-mechanical properties of Pcm based on dfSfr filled by silica composition the degree of filling wt.% the properties density kg/m3 compression strength at yield, mPa hardness, mPa DFSFR 0 1450 171 132 DFSFR + WS-120 20 1547 179 150 40 1650 154 154 60 1744 89 129 80 1840 54 110 DFSFR + A-380 20 1540 140 144 40 1630 60 143 60 1725 20 120 80 1420 14 107 temperatures (from 300°C for initial DFSFR up to 350°C for PCM containing a of 60 wt.% DFSFR and 40 wt.% WS-120). Its need to note that the complex of physic-mechanical properties of developed PCM which filled by WS-120 its higher then for A-380, its can be a result of a higher content of a functional groups on the surface of a WS-120 and as a large surface area of that filler then for A-380. It is known that due to processing of phenolic resin which are filled with dispersed materials, was observed an interaction between the functional groups on the surface of filler and polymer matrix [23]. In our case, on the surface of the silica, are large numbers of hydroxyl groups chemically bond- ed to silicon atoms [24], which can form chemical bonds with the polymer matrix during the process- ing. To confirm this assumption, was conducted a study by infrared spectroscopy (fig. 5). In the infrared spectra of the materials an ab- sorption rate is presented which is specific for sili- cas in: 1050–1210 cm–1 area, which is responsible for antisymmetric fluctuations Si-O bonds in Si-O-Si of tetrahedron; 800–810 cm–1, which character- izes the symmetric vibrations of tetrahedron SiO2; 965–974 cm–1, and responding to the wobble Si-O bonds in Si-OH; 3430–3440 and 1620–1640 cm–1, which describes the stretching and deformation vibrations of bound and free hydroxyl groups. It is known [25] that the presence of hydroxyl groups on the filler surface promotes the formation of hydrogen bonds with the polymer matrix more electronegative atoms due to PCM processing. fig. 5. IR spectra of silica oxide: 1 — WS-120; 2 — A-380 fig. 6. IR spectra of PCM (60% DFSFR + 40% filler) filled with silica: 1 — WS-120; 2 — A-380 T, % 4000 3000 2000 1500 1000 500 Wavenumber, cm–1 2 1 T, % 4000 3000 2000 1500 1000 500 Wavenumber, cm–1 2 1 наука, технології, інноВації • 2018, № 2 Science, technologieS, innovationS • 2018, № 252 To confirm the characteristics of the chemical formation of bonds between the polymer matrix and filler we carried out the spectroscopic study of PCM based DFSFR filled with silica (fig. 6). In the IR spectra of the PCM, there are intense absorption peaks in the 3430–3450 and 1610– 1640 cm–1, they describe the stretching and de- formation vibrations of free and associated groups (–OH). It should be noted that the intensity of ab- sorption peaks in the region 3430–3450 from PCM with WS-120 and A-380 is different. More intensive absorption peak observed for PCM filled by WS-120, it indicates the formation of a larg- er number of hydrogen bonds between the filler surface and polymer matrix. Such a hypothesis is correlated with the results of thermogravimetric analysis and it is likely the result of more intensive interaction at the interface “polymer – disperse filler”. concluSion It was established that the PCM based on DFSFR and silica got the high level of thermal sta- bility. It was found that the content in DFSFR of silicas shifts the temperature of the active destruc- tion of PCM toward higher temperatures. Since the heat resistance of developed polymer composites 25–30°С is more than for the initial polymer has and it achieves 370°С. Apparently, this is result of increasing the level of interaction on the boundary “polymer-disperse filler”, at the processing condi- tion (temperature 170–190°C) due to appearing of covalent and hydrogen bonds between hydroxyl groups on the surface of silica and methylol groups of the polymer matrix. referenceS/ СПиСок ВикориСтаних Джерел 1. Encyclopedia of polymers. Vol. 3. Head. Ed. V.A. Kar- gin. Moscow (in Russ.): Soviet Encyclopedia, 1972, 1152 p. 2. Mihailin Y.A. Thermostable polymers and polymeric materials. SPb.: Profession, 2006, 627 p. 3. Buller K.-U. Heat and heat-resistant polymers. Ed. Y.S. Vugonskoy. Moscow (in Russ.): Chemistry, 1984, 1056 p. 4. Korshak V.V. Resistant polymers. Moscow (in Russ.): Nauka, 1969, 381 p. 5. He Y., Walsh D., Shi C. (2015) Fluoropolymer com- posite coating for condensing heat exchangers: Characterization of the mechanical, tribological and thermal properties. Applied Thermal Engineering, Vol. 91, рр. 387–398. 6. Adamenko N.A., Kazurov A.V., Agafonov G.B. (2006) Heat-resistant polymer composite materials ob- tained by explosive pressing. Chemistry and Chemi- cal Engineering, Vol. 49, рр. 123–124. 7. Golchina Ar., Simmonsa G.F., Glavatskiha S.B. (2012) Break-away friction of PTFE materials in lub- ricated conditions. Tribology International, Vol. 48, рр. 54–62. 8. Ünlüa B.S., Atikb E., Köksalb S. (2009) Tribologi- cal properties of polymer-based journal bearings. Materials&Design, Vol. 30, рр. 2618–2622. 9. Dudka A.M., Sutar V.I., Nachovnuy I.I. (2010) Re- search of tribotechnical performance polymer composites for thermally loaded friction units of machines and apparatus of chemical equipment. Questions of chemistry and chemical technology, Vol. 6, рр. 148-151. 10. Meisam S., Mohsen H., Mehdi R. (2015) Synthesis of a novel CNT/polyamide composite containing phosphine oxide groups and its flame retardancy and thermal properties. New Carbon Materials, Vol. 30, рр. 397–403. 11. Kabat O.S., Sitar V.І. (2016) Resistant composites based on phenylone C2 with a high level of work- ability during processing into products. Questions of chemistry and chemical technology, Vol. 3 (107), рр. 60–64. 12. Sytar V.I., Burya A.I. Burmistr M.V. and oth. (2005) Structural and tribotechnical plastics based on phenylone. Proceedings of the 5th anniversary of Industrial Conference ”Efficiency implementation of scientific, resource and industrial potential in modern conditions”, рр. 317–320. 13. Sіrenko G.O., Svіdersky V.P., Bazyuk L.B. (2005) Thermal properties of composite materials based on aromatic polyimide, graphite-filled. Polymer Journal, Vol. 27, рр. 272–277. 14. Fengxia D., Guoliang H., Fengxiang C. and oth. (2016) The lubricity and reinforcement of carbon fibers in polyimide at high temperatures. Tribology International, Vol. 101, рр. 291–300. 15. Hazbulatova Z.S., Asuev L.A., Nasurova M.A. (2010) Aromatic polyketones (review). Plastics, Vol. 2, рр. 32–38. 16. Koikea H., Kidab K., Mizobeb K. and oth. (2015) Wear of hybrid radial bearings (PEEK ring-PTFE re- tainer and alumina balls) under dry rolling contact. Tribology International, Vol 90, рр. 77–83. 17. Wang Z., Gao D. (2013) Comparative investigation on the tribological behavior of reinforced plastic composite under natural seawater lubrication. Materials&Design, Vol. 51, рр. 983–988. 18. Lipko O.O., Burmistr M.V., Kobelchuk Y.M. and oth. (2015) New water-soluble thermosetting binders for Pressed materials. Questions of chemistry and chemical technology, Vol. 6, рр. 66–73. 19. Podgorny E.V., Dembitsky O.E., Kabat O.S., Cher- vakov O.V. etc. (2015) Polymer composites based on diphenylolpropane-formaldehyde polymer, sili- ca and titanium. VIIth International conference of chemistry and modern technology "IncHemTec", Vol. 4, рр. 149. 20. Golub К. С., Chapoval Y.M., Kobelchuk Y.M. (2015) New resol resins based on bisphenol A and their composites with application. VII-th International conference of chemistry and modern technology "IncHemTec", Vol. 4, рр. 128–129. 21. GOST 18307-78. Carbon white. Moscow (in Russ.): Publishing House of Standards, 1988, 21 p. 22. GOST 14922-77. Aerosil. Moscow (in Russ.): Pub- lishing House of Standards, 1977, 21 p. 23. Tager A.A. Physical chemistry of polymers. Moscow (in Russ.): Chemistry, 1968, 536 p. 24. Chukin G.D. Chemistry of surface and structure of the dispersed silica. Moscow (in Russ.): Printing Paladin, OOO "PRINT", 2008, 172 p. 25. Moscow V.V. (1999) Hydrogen bonding in orga- nic chemistry. Soros Educational Journal, Vol. 2, рр. 58–64. інформаційні технології Для ВиробництВа informational technologieS for Production 53 о.С. кабат, Ю.м. кобельчук, Д.о. черваков, о.В. черваков Полімерні комПозиційні матеріали з ВиСоким ріВнем термічної СтабільноСті на оСноВі фенольної Смоли і ДиСПерСних ДіокСиДіВ кремніЮ Резюме. Розвиток машинобудівної галузі ускладнився без використання термостійких полімерних компо- зиційних матеріалів для деталей машин і механізмів, що працюють при температурах до 300°С. Запропо- новано як полімерну матрицю обрати діфенілолсульфон-формальдегідну смолу, а в якості наповнювачів використати дисперсні кремнеземи — білу сажу марки БС-120 та аеросил марки А-380. Розроблені матері- али мають високу термічну стабільність (до 370°C), що на 25-30°C вище, ніж для ненаповненого полімеру. Такий результат проявився при збільшенні рівня взаємодії в процесі переробки на межі розподілу фаз “по- лімер — дисперсний наповнювач” в умовах переробки (при температурах 170–190°С) за рахунок утворення ковалентних і водневих зв’язків між гідроксильними групами на поверхні наповнювача та метилольними групами полімерної матриці. Ключові слова: полімерні композиційні матеріали, термічна стабільність, фенопласти, наповнювачі з кремнезема. о.С. кабат, Ю.м. кобельчук, Д.о. черваков, о.В. черваков Полимерные комПозиционные материалы С ВыСоким уроВнем термичеСкой СтабильноСти на оСноВе фенольной Смолы и ДиСПерСных ДиокСиДоВ кремния Резюме. Развитие машиностроительной отрасли затруднено без использования термостойких поли- мерных композиционных материалов для изготовления деталей машин и механизмов, работающих при температурах до 300°С. Предложено в качестве полимерной матрицы использовать дифенилолсульфон- формальдегидную смолу, а в качестве наполнителей — дисперсные кремнеземы — белую сажу марки БС-120 и аэросил марки А-380. Разработанные материалы имеют высокую термическую стабильность (до 370°C), что на 25-30°C выше, чем для ненаполненного полимера. Такой результат может быть следствием увеличения уровня взаимодействия на границе раздела фаз “полимер — дисперсный наполнитель” в усло- виях переработки (при температуре 170–190°С) за счет образования ковалентных и водородных связей между гидроксильными группами на поверхности наполнителя и метилольными группами полимерной матрицы. Ключевые слова: полимерные композиционные материалы, термическая стабильность, фенопласты, на- полнители из кремнезема. information about the authorS kabat o.S., kobelchuk yu.m., chervakov d.o., chervakov o.v. — Ukrainian State University of Chemical Engineering, 8, Нaharin Ave., Dnipro, Ukraine, 49005 інформація Про аВторіВ кабат о.С., кобельчук Ю.м., черваков Д.о., черваков о.В. — Український державний хіміко-технологіч- ний університет, пр. Гагаріна, 8, м. Дніпро, Україна, 49005 информация об аВторах кабат о.С., кобельчук Ю.м., черваков Д.о., черваков о.В. — Украинский государственный химико- технологический университет, пр. Гагарина, 8, г. Днепр, Украина, 49005