Uniqueness of Solutions of Some Nonlocal Boundary-Value Problems for Operator-Differential Equations on a Finite Segment
For the equation L₀x(t) + L₁x⁽¹⁾(t) + ... + Lnx⁽ⁿ⁾(t) = 0, where Lk, k = 0, 1, ... , n, are operators acting in a Banach space, we formulate conditions under which a solution x(t) that satisfies some nonlocal homogeneous boundary conditions is equal to zero.
Gespeichert in:
| Datum: | 2003 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2003
|
| Schriftenreihe: | Український математичний журнал |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/163938 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Uniqueness of Solutions of Some Nonlocal Boundary-Value Problems for Operator-Differential Equations on a Finite Segment / G.V. Radzievskii // Український математичний журнал. — 2003. — Т. 55, № 7. — С. 1006–1009. — Бібліогр.: 5 назв. — англ. |