Subharmonics of a Nonconvex Noncoercive Hamiltonian System
We study the problem of the existence of multiple periodic solutions of the Hamiltonian system Jx˙+u∇G(t,u(x))=e(t), where u is a linear mapping, G is a C¹-function, and e is a continuous function.
Saved in:
| Date: | 2003 |
|---|---|
| Main Authors: | Kallel, N., Timoumi, М. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2003
|
| Series: | Український математичний журнал |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/164362 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Subharmonics of a Nonconvex Noncoercive Hamiltonian System / N. Kallel, М. Timoumi // Український математичний журнал. — 2003. — Т. 55, № 11. — С. 1459–1466. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On the Lie algebra structures connected with Hamiltonian dynamical systems
by: Smirnov, R.G.
Published: (1997) -
Model BCS Hamiltonian and Approximating Hamiltonian in the Case of Infinite Volume. IV. Two Branches of Their Common Spectra and States
by: Petrina, D.Ya.
Published: (2003) -
Spectrum and states of the BCS Hamiltonian with sources
by: Petrina, D.Ya.
Published: (2008) -
Spectrum and States of the BCS Hamiltonian in a Finite Domain. II. Spectra of Excitations
by: Petrina, D.Ya.
Published: (2001) -
New second branch of the spectrum of the BCS Hamiltonian and a “pseudogap”
by: Petrina, D.Ya.
Published: (2005)