О зависимости между нормой функции и нормами ее производных порядка k , r−2 и r,0<k<r−2
Знайденi необхiднi i достатнi умови на систему додатних чисел Mk1,Mk2,Mk3,Mk4,0=k1<k2<k3=r−2,k4=r, якi гарантують iснування функцiї x∈Lr∞,∞(R), такої, що ||x(ki)||∞=Mki,i=1,2,3,4. We establish conditions for a system of positive numbers M k1, M k2, M k3, M k4, 0 = k 1 < k 2 < k 3 = r − 2...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2012 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут математики НАН України
2012
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/164422 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | О зависимости между нормой функции и нормами ее производных порядка k , r−2 и r,0<k<r−2 / В.Ф. Бабенко, О.В. Коваленко // Український математичний журнал. — 2012. — Т. 64, № 5. — С. 597-603. — Бібліогр.: 12 назв. — рос. |