О наилучшем полиномиальном приближении в пространстве L₂ и поперечниках некоторых классов функций
Розглянуто питання про найкращу полiномiальну апроксимацiю 2π-перiодичних функцiй у просторi L₂, коли величина похибки наближення En−1(f) оцiнюється через модуль неперервностi k-го порядку Ωk(f), в якому замiсть оператора зсуву Thf(x)=f(x+h) використано оператор Стєклова Shf. Для класiв функцiй, виз...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 2012 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Український математичний журнал
2012
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/164436 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | О наилучшем полиномиальном приближении в пространстве L₂ и поперечниках некоторых классов функций / С.Б. Вакарчук, В.И. Забутная // Український математичний журнал. — 2012. — Т. 64, № 8. — С. 1025-1032. — Бібліогр.: 21 назв. — рос. |