A locally compact quantum group of triangular matrices
We construct a one parameter deformation of the group of 2×2 upper triangular matrices with determinant 1 using the twisting construction. An interesting feature of this new example of a locally compact quantum group is that the Haar measure is deformed in a non-trivial way. Also, we give a comple...
Saved in:
| Date: | 2008 |
|---|---|
| Main Authors: | Fima, P., Vainerman, L. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2008
|
| Series: | Український математичний журнал |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/164494 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | A locally compact quantum group of triangular matrices / P. Fima, L. Vainerman // Український математичний журнал. — 2008. — Т. 60, № 4. — С. 564–576. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Group classification of systems of nonlinear reaction-diffusion equations with triangular diffusion matrix
by: Nikitin, A.G.
Published: (2007) -
Locally Compact Quantum Groups. A von Neumann Algebra Approach
by: Alfons Van Daele
Published: (2014) -
The absolute factorization of matrices in the rings of block-triangular matrices
by: N. S. Dzhaliuk, et al.
Published: (2013) -
Semiscalar equivalence of polynomial matrices and triangular similarity of numerical matrices
by: B. Z. Shavarovskyi
Published: (2013) -
Triangular form of Laurent polynomial matrices and their factorization
by: M. I. Kuchma, et al.
Published: (2022)