First eigenvalue of the Laplace operator and mean curvature

The main theorem of this paper states a relation between the first nonzero eigenvalue of Laplace operator and the squared norm of mean curvature in irreducible compact homogeneous manifolds under spatial conditions. This statement has some results that states in the remainder of paper.

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
1. Verfasser: Etemad, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/164697
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:First eigenvalue of the Laplace operator and mean curvature / A. Etemad // Український математичний журнал. — 2008. — Т. 60, № 7. — С. 1000–1003. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The main theorem of this paper states a relation between the first nonzero eigenvalue of Laplace operator and the squared norm of mean curvature in irreducible compact homogeneous manifolds under spatial conditions. This statement has some results that states in the remainder of paper.