First eigenvalue of the Laplace operator and mean curvature
The main theorem of this paper states a relation between the first nonzero eigenvalue of Laplace operator and the squared norm of mean curvature in irreducible compact homogeneous manifolds under spatial conditions. This statement has some results that states in the remainder of paper.
Gespeichert in:
| Datum: | 2008 |
|---|---|
| 1. Verfasser: | Etemad, A. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2008
|
| Schriftenreihe: | Український математичний журнал |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/164697 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | First eigenvalue of the Laplace operator and mean curvature / A. Etemad // Український математичний журнал. — 2008. — Т. 60, № 7. — С. 1000–1003. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
First eigenvalue of the Laplace operator and mean curvature
von: Etemad, A.
Veröffentlicht: (2008) -
On the Relation between Curvature, Diameter, and Volume of a Complete Riemannian Manifold
von: Si Duc Quang, et al.
Veröffentlicht: (2004) -
Approximation of Smooth Functions by Weighted Means of N-Point Padé Approximants
von: Jedynak, R., et al.
Veröffentlicht: (2013) -
Strongly alternative Dunford–Pettis subspaces of operator ideals
von: Moshtaghioun, S.M.
Veröffentlicht: (2013) -
Approximation for absolutely continuous functions by Stancu Beta operators
von: Xiao-Ming Zeng
Veröffentlicht: (2011)