Reduction of the self-dual Yang-Mills equations. I. The Poincaré group
For the vector potential of the Yang-Mills field, we give a complete description of ansatzes invariant under three-parameterP (1, 3) -inequivalent subgroups of the Poincaré group. By using these ansatzes, we reduce the self-dual Yang-Mills equations to a system of ordinary differential equations.
Saved in:
| Date: | 1995 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
1995
|
| Series: | Український математичний журнал |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/165046 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Reduction of the self-dual Yang-Mills equations. I. The Poincaré group / R.Z. Zhdanov, V.I. Lahno, W.I. Fushchych // Український математичний журнал. — 1995. — Т. 47, № 4. — С. 456–462. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | For the vector potential of the Yang-Mills field, we give a complete description of ansatzes invariant under three-parameterP (1, 3) -inequivalent subgroups of the Poincaré group. By using these ansatzes, we reduce the self-dual Yang-Mills equations to a system of ordinary differential equations. |
|---|