Generalizations of ⊕ -supplemented modules

We introduce ⊕-radical supplemented modules and strongly ⊕-radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕-radical supplemented module; (2) a co...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Türkmen, B.N., Pancar, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/165329
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generalizations of ⊕ -supplemented modules / B.N. Türkmen, A. Pancar // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 555-564. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We introduce ⊕-radical supplemented modules and strongly ⊕-radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕-radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and only if every left R-module is a srs⊕-module; (3) over a local Dedekind domain, every ⊕-radical supplemented module is a srs⊕-module. Moreover, we completely determine the structure of these modules over local Dedekind domains.