Analog of the Liouville Equation and BBGKY Hierarchy for a System of Hard Spheres with Inelastic Collisions
Dynamics of a system of hard spheres with inelastic collisions is investigated. This system is a model for granular flow. The map induced by a shift along the trajectory does not preserve the volume of the phase space, and the corresponding Jacobian is different from one. A special distribution func...
Збережено в:
| Дата: | 2005 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2005
|
| Назва видання: | Український математичний журнал |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/165750 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Analog of the Liouville Equation and BBGKY Hierarchy for a System of Hard Spheres with Inelastic Collisions / D.Ya. Petrina, G.L. Caraffini // Український математичний журнал. — 2005. — Т. 57, № 6. — С. 818–839. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Dynamics of a system of hard spheres with inelastic collisions is investigated. This system is a model for granular flow. The map induced by a shift along the trajectory does not preserve the volume of the phase space, and the corresponding Jacobian is different from one. A special distribution function is defined as the product of the usual distribution function and the squared Jacobian. For this distribution function, the Liouville equation with boundary condition is derived. A sequence of correlation functions is defined for canonical and grand canonical ensemble. The generalized BBGKY hierarchy and boundary condition are deduced for correlation functions. |
|---|