On the Well-Posedness of a Two-Point Boundary-Value Problem for a System with Pseudodifferential Operators

We investigate the problem of the well-posedness of a boundary-value problem for a system of pseudodifferential equations of arbitrary order with nonlocal conditions. The equation and boundary conditions contain pseudodifferential operators whose symbols are defined and continuous in a certain domai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
1. Verfasser: Kengne, E.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2005
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/165823
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the Well-Posedness of a Two-Point Boundary-Value Problem for a System with Pseudodifferential Operators / E. Kengne // Український математичний журнал. — 2005. — Т. 57, № 8. — С. 1131 – 1136. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-165823
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1658232025-02-23T17:58:05Z On the Well-Posedness of a Two-Point Boundary-Value Problem for a System with Pseudodifferential Operators Про коректність двоточкової крайової задачі для систем із псевдодиференціальними операторами Kengne, E. Короткі повідомлення We investigate the problem of the well-posedness of a boundary-value problem for a system of pseudodifferential equations of arbitrary order with nonlocal conditions. The equation and boundary conditions contain pseudodifferential operators whose symbols are defined and continuous in a certain domain H ⊂ ℝᵐσ. A criterion for the existence and uniqueness of solutions and for the continuous dependence of the solution on the boundary function is established. Розглянуто питання про коректність крайової задачі з нелокальною умовою для системи псевдодиференціальних рівнянь довільного порядку. Рівняння та граничні умови містять псевдодиференціальні оператори із символами, що визначені та неперервні у деякій області H ⊂ ℝᵐσ. Встановлено критерій існування та єдиності розв'язків, а також неперервної залежності розв'язку від граничної функції. 2005 Article On the Well-Posedness of a Two-Point Boundary-Value Problem for a System with Pseudodifferential Operators / E. Kengne // Український математичний журнал. — 2005. — Т. 57, № 8. — С. 1131 – 1136. — Бібліогр.: 9 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/165823 517.9 en Український математичний журнал application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Короткі повідомлення
Короткі повідомлення
spellingShingle Короткі повідомлення
Короткі повідомлення
Kengne, E.
On the Well-Posedness of a Two-Point Boundary-Value Problem for a System with Pseudodifferential Operators
Український математичний журнал
description We investigate the problem of the well-posedness of a boundary-value problem for a system of pseudodifferential equations of arbitrary order with nonlocal conditions. The equation and boundary conditions contain pseudodifferential operators whose symbols are defined and continuous in a certain domain H ⊂ ℝᵐσ. A criterion for the existence and uniqueness of solutions and for the continuous dependence of the solution on the boundary function is established.
format Article
author Kengne, E.
author_facet Kengne, E.
author_sort Kengne, E.
title On the Well-Posedness of a Two-Point Boundary-Value Problem for a System with Pseudodifferential Operators
title_short On the Well-Posedness of a Two-Point Boundary-Value Problem for a System with Pseudodifferential Operators
title_full On the Well-Posedness of a Two-Point Boundary-Value Problem for a System with Pseudodifferential Operators
title_fullStr On the Well-Posedness of a Two-Point Boundary-Value Problem for a System with Pseudodifferential Operators
title_full_unstemmed On the Well-Posedness of a Two-Point Boundary-Value Problem for a System with Pseudodifferential Operators
title_sort on the well-posedness of a two-point boundary-value problem for a system with pseudodifferential operators
publisher Інститут математики НАН України
publishDate 2005
topic_facet Короткі повідомлення
url https://nasplib.isofts.kiev.ua/handle/123456789/165823
citation_txt On the Well-Posedness of a Two-Point Boundary-Value Problem for a System with Pseudodifferential Operators / E. Kengne // Український математичний журнал. — 2005. — Т. 57, № 8. — С. 1131 – 1136. — Бібліогр.: 9 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT kengnee onthewellposednessofatwopointboundaryvalueproblemforasystemwithpseudodifferentialoperators
AT kengnee prokorektnístʹdvotočkovoíkrajovoízadačídlâsistemízpsevdodiferencíalʹnimioperatorami
first_indexed 2025-11-24T04:53:56Z
last_indexed 2025-11-24T04:53:56Z
_version_ 1849646158925791232
fulltext UDC 517.9 E. Kengne (Univ. Dschang, Cameroon) ON THE PROPER POSEDNESS OF TWO-POINT BOUNDARY-VALUE PROBLEM FOR SYSTEM WITH PSEUDODIFFERENTIAL OPERATORS PRO KOREKTNIST| DVOTOÇKOVO} KRAJOVO} ZADAÇI DLQ SYSTEM IZ PSEVDODYFERENCIAL|NYMY OPERATORAMY The question on the proper posedness of boundary-value problem with nonlocal condition for a system of pseudodifferential equations of an arbitrary order is investigated. The equation and the boundary conditions contain the pseudodifferential operators which symbols are defined and continuous in some domain H ⊂ Rσ m . The criterion of the existence, uniqueness of solutions and of the continuously dependence of the solution on the boundary function is established. Rozhlqnuto pytannq pro korektnist\ krajovo] zadaçi z nelokal\nog umovog dlq systemy psevdodyferencial\nyx rivnqn\ dovil\noho porqdku. Rivnqnnq ta hranyçni umovy mistqt\ psev- dodyferencial\ni operatory iz symvolamy, wo vyznaçeni ta neperervni u deqkij oblasti H ⊂ ⊂ Rσ m . Vstanovleno kryterij isnuvannq ta [dynosti rozv’qzkiv, a takoΩ neperervno] zaleΩnosti rozv’qzku vid hranyçno] funkci]. 1. Introduction. The present paper generalizes and evolves the results of works [1, 2]. It investigates the question of the proper posedness of nonlocal boundary-value problem for system of equations, containing the pseudodifferential operators that symbols are defined and continuous in some domain H ⊂ R m . The solution of the problem is sought in functional spaces. Consider in the infinite layer Π = R m × 0, T[ ] the following two-point boundary problem L t i x u x t u t P i x u∂ ∂ − ∂ ∂     = ∂ ∂ + − ∂ ∂     =, ( , ) 0 , (1) M i x u x t A i x u x B i x u x T x− ∂ ∂     = − ∂ ∂     + − ∂ ∂     =( , ) ( , ) ( , ) ( )0 ϕ (2) where ∂ ∂ = ∂ ∂ ∂ ∂ … ∂ ∂    x x x xm1 2 , , , , u u u um= …( )col 1 2, , , , ϕ ϕ ϕ ϕ( ) ( ), ( ), , ( )x x x xm= …( )col 1 2 ; P i x P i xjk j k l − ∂ ∂     = − ∂ ∂     =, ,1 , A i x A i xjk j k l − ∂ ∂     = − ∂ ∂     =, ,1 , B i x B i xjk j k l − ∂ ∂     = − ∂ ∂     =, ,1 matrices that elements are pseudodifferential operators with symbols P( )σ , A( )σ , and B( )σ , respectively, continuous in some domain H ⊂ Rσ m . Generally speaking, problem (1), (2) is improperly posed, even if Pjk ( )σ , Ajk ( )σ , and Bjk ( )σ are polynomials [3 – 6]. We shall be concerned with the question of the existence and uniqueness of solution © E. KENGNE, 2005 ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 8 1131 1132 E. KENGNE of problem (1), (2), and the question of the continuously dependence of this solution on the boundary function ϕ( )x . 2. Notations and definitions. For the description of the spaces of solutions, we introduce the following notation: WΩ ∞ is the space of vector-functions u x( ) = ( u x1( ) , u x2( ), … , u xl( )), u xj ( ) ∈ ∈ L m 2 R( ), such that the Fourier transform ˆ ( )uj σ is compactly supported in Ω ⊂ ⊂ Rσ ∞ ; the space WΩ ∞ is invariant relatively to the pseudodifferential operator à x − ∂ ∂     ˜ ( ) ( ) ˜( ) ˆ( ) exp , ( )A i x u x A u ix d u x Wm− ∂ ∂     = ( ) ∈     − ∞∫2π σ σ σ σ Ω Ω with the matrix ˆ( )A σ continuous in Ω, moreover, à i x − ∂ ∂     : WΩ ∞ → WΩ ∞ is a continuous application; WΩ ∞( )′ is the space of generalized vector-functions on WΩ ∞ ; this space is invariant relatively to  i x ∂ ∂     ; WΩ +∞ = WΩ ∞( )′ , WΩ −∞ = W− ∞( )′Ω , where – Ω = { σ ∈ R m : – σ ∈ Ω }; Ck ( 0, T[ ], WΩ ±∞) are spaces of vector-functions that for every t ∈ 0, T[ ] are functions of space WΩ ±∞ respectively and continuously depend on t together with the derivatives up to order k. According to I. G. Petrovski [7], introduce the following definition: Definition. We say that problem (1), (2) is properly posed in Cn( 0, T[ ], WΩ ±∞) if, for every boundary function ϕ( )x ∈ WΩ ±∞ , problem (1), (2) should have in Cn( 0, T[ ], WΩ ±∞) one and only one solution u x t( , ) , continuously depending on ϕ( )x . We shall not be concerned with Cauchy problem (the proper posedness of the Cauchy problem for equation (1) is studied in [7]). 3. On the proper posedness of problem (1), (2). It is easily seen that the following two applications for every domain Ω ⊂ H are continuous: L t i x ∂ ∂ − ∂ ∂     , : Cn( 0, T[ ], WΩ ±∞) → C0( 0, T[ ], WΩ ±∞), u � ∂ ∂ u x t t ( , ) + P i x − ∂ ∂     u x t( , ) and M i x − ∂ ∂     : Cn( 0, T[ ], WΩ ±∞) → C0( 0, T[ ], WΩ ±∞), u � A i x − ∂ ∂     u x( , )0 + B i x u x T− ∂ ∂     ( , ). Let us prove the inverse. If we denote by ˆ( , )u tσ and ˆ ( )ϕ σ the x-Fourier transforms of the solution u x t( , ) of problem (1), (2) and the boundary function ϕ( )x , respectively, it is easily seen that ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 8 ON THE PROPER POSEDNESS OF TWO-POINT BOUNDARY-VALUE PROBLEM … 1133 ˆ( , )u tσ is a solution of the following boundary-value problem: L d dt u t du t dt P u t, ˆ( , ) ˆ( , ) ( ) ˆ( , )σ σ σ σ σ    = + , (3) M u t( ) ˆ( , )σ σ = A u B u T( ) ˆ( , ) ( ) ˆ( , )σ σ σ σ0 + = ˆ ( )ϕ σ . (4) Let us find the fundamental matrix of solutions F t( , )σ of system (3). Because P( )σ is a matrix continuous in H, the roots of characteristic equation det ( )I Pλ σ+ = 0 are continuous functions of parameter σ. We denote by χ j = χ σj ( ) the multiplicity of the root λ j = λ σj ( ), j = 1, ν , ν = ν σ( ) . According to the theory of matrices [8], there exist two polynomial matrices M( , )λ σ and N( , )λ σ = Njk j k l ( , ) , , λ σ =1 such that M( , )λ σ × L( , )λ σ × N( , )λ σ ≡ Q( , )λ σ ≡ hj jk j k l ( , ) , , λ σ δ =1 , det ( , )N λ σ ≡ ≡ N( )σ ≠ 0, where hj ( , )λ σ = k =∏ 1 ν (λ – λ σ k q jk) ( ) , j = 1, l , where j l jkq=∑ 1 ( )σ = = χ σk ( ) , k = 1, l , and δ jk are the Kronecker symbols. It follows from the equality M( , )λ σ × L( , )λ σ × N( , )λ σ ≡ Q( , )λ σ and condition det ( , )N λ σ ≡ N( )σ ≠ 0 that M( , )λ σ × L( , )λ σ ≡ Q( , )λ σ × N−1( , )λ σ , and after using the transformation y t( , )σ = N d dt u t−     1 , ˆ( , )σ σ , system (3) takes the form Q d dt y t, ( , )σ σ    = 0, that is, h d dt y tj j, ( , )σ σ    = 0, j = 1, l . (5) The fundamental system of solutions of each of equations (5) reads as y t d d tj k k , ( , ) exp( )α α λ λ σ λ λ=     − = 1 , α σ= 1, ( )qjk , k = 1, ν . Therefore, the fundamental matrix of solutions of system (3) reads as F t( , )σ = exp( ) ( )! ! ! ( , ) , , , , , , , λ α ρ λ λ σ α β λ λ β α ν ρ α β k s s p j j l q k s t t s d d N k k × − ×    = − = = = = = − − ∑1 1 0 1 1 1 1 1 . Using the theorem of dependence of solutions on the parameter [9], we conclude that F t( , )σ is continuous with respect to σ. Therefore, the solution of system (3) reads as ˆ( , )u tσ = F t C( , )σ , where C = = col (C1, C2 , … , Cl ). Using the boundary condition (4), we find that C is a solution of the following linear algebraic system A F B F T C( ) ( , ) ( ) ( , ) ˆ ( )σ σ σ σ ϕ σ0 +( ) = , whose determinant is ∆( ) det ( ) det ( ) ( , ) ( ) ( , )σ σ σ σ σ σ= = +D A F B F T0 , where ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 8 1134 E. KENGNE D A F B F T( ) ( ) ( , ) ( ) ( , )σ σ σ σ σ= +0 . Let Ω = H N\ ∆ , N∆ = {σ ∈ R m : ∆( )σ = 0}. For every σ ∈ Ω , C = C( )σ = = D−1( )σ × ˆ ( )ϕ σ and the solution of problem (3), (4) reads as ˆ( , )u tσ = F t( , )σ × × D−1( )σ ˆ ( )ϕ σ ∀ ∈( )σ Ω . Let W t( , )σ = F t( , )σ × D−1( )σ . Associate with matrix W t( , )σ the pseudodifferential operator W i x t− ∂ ∂     , that acts continuously from WΩ ±∞ respectively to Cn( 0, T[ ], WΩ ±∞), that is, W i x t− ∂ ∂     , : WΩ ±∞ → Cn( 0, T[ ], WΩ ±∞), u x( ) � W i x t− ∂ ∂     , u x( ) is a continuous application on WΩ ±∞ . Theorem. In order that problem (1), (2) should be properly posed in Cn( 0, T[ ], WΩ ±∞), it is necessary and sufficient that Ω = H N\ ∆ . Proof. It is clear that Ω ⊂ H . We prove the theorem in the case of Cn( 0, T[ ], WΩ +∞) (the case of Cn( 0, T[ ], WΩ −∞) can be done by analogy with [8]). Necessity. If σ0 ∈ Ω ∩ N∆ , the homogeneous problem L d dt u t, ˆ( , )σ σ0 0 0     = , M u t A u B u T( ) ˆ( , ) ( ) ˆ( , ) ( ) ˆ( , )σ σ σ σ σ σ0 0 0 0 0 00 0= + = possesses more than one solution. Consequently, the solution (if it exists) of the homogeneous problem L t i x u x t∂ ∂ − ∂ ∂     =, ( , ) 0, M i x u x t A i x u x B i x u x T− ∂ ∂     = − ∂ ∂     + − ∂ ∂     =( , ) ( , ) ( , )0 0 is not unique in Cn( 0, T[ ], WΩ +∞), and this implies the nonuniqueness of solutions of problem (1), (2) in Cn( 0, T[ ], WΩ +∞). The ill-posedness of problem (1), (2) in Cn( 0, T[ ], WΩ +∞) follows from the nonuniqueness of its solution in Cn( 0, T[ ], WΩ +∞). Sufficiency. Let Ω = H N\ ∆ . For every ϕ( )x ∈ WΩ +∞ , u x t( , ) = W i x t− ∂ ∂     , ϕ( )x is a solution of problem (1), (2) in Cn( 0, T[ ], WΩ +∞) and continuously depends on ϕ( )x , which implies the existence of solution of problem (1), (2) in Cn( 0, T[ ], WΩ +∞) that continuously depends on ϕ( )x . In order to prove the uniqueness of solution of problem (1), (2), let us notice that if u x t( , ) ∈ Cn( 0, T[ ], WΩ +∞), its x-Fourier transform ˆ( , )u tσ will be a solution of problem (3), (4). Under the condition of the theorem, this problem (3), (4) possesses one and only one solution for every σ ∈ Ω . If σ ∈ R m \ Ω , then ˜( , )u tσ ≡ 0. This implies the uniqueness of solution of problem (1), (2) in Cn( 0, T[ ], WΩ +∞), and the theorem is proved. 4. Application. Consider an infinite set of point-like particles, disposed on a string ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 8 ON THE PROPER POSEDNESS OF TWO-POINT BOUNDARY-VALUE PROBLEM … 1135 at the same distances l from each other; the mass of each particle is m, while F is the tension of the string. The values of F and m are supposed to be constant every- where and independent of time. Particles are supposed to have only one degree of freedom. At each given time t, the motion of the j-th particle is completely defined in terms of the position of its adjacent particles, i.e., the ( j – 1)-th and ( j + 1)-th ones ( j = 0, ± 1, ± 2, … ). Thus, the fundamental law of dynamics is given by ˙̇ ( ) ( ) ( ) ( )v v v vn n n nt a t t t= + −( )+ − 2 1 14 2 , n = 0, ± 1, ± 2, … , (6) being a = 2 F ml . We associate with (6) the boundary conditions v vn n nT( ) ( )0 + = ϕ , (7) ˙ ( ) ˙ ( )v vn n nT0 + = ψ . Consider the differentiable function v( , )x t that takes the values of vj at the nodes of the lattice, i.e., v( , )jl t = vj t( ) . Therefore, system (6) acquires the form of the difference-differential equation ∂ ∂ = + − + −[ ] 2 2 2 4 2 v v v v ( , ) ( , ) ( , ) ( , ) x t t a x l t x t x l t , 0 < t < T. (8) After using the equality e x t i i x − ∂ ∂    2 v( , ) = v( , )x l t+ , equation (8) takes the form of the pseudodifferential equation: ∂ ∂ + − ∂ ∂     = 2 2 2 2 0v v t a i x sin , 0 < t < T. (9) By setting u = col (u1, u2 ) with u1 = v and u2 = ∂ ∂ v t , equation (9) and the boundary conditions (7) become ∂ ∂ + − ∂ ∂     =u t P i x u 0 , (10) u x u x T x1 1 10( , ) ( , ) ( )+ = θ , (11) u x u x T x2 2 20( , ) ( , ) ( )+ = θ , respectively, where P i x a i x − ∂ ∂     = − − ∂ ∂           0 1 02 2sin and θ1( )x and θ2( )x are two differentiable functions that take the values of ϕn and ψn , respectively, at the nodes of the lattice. For this example, F t( , )σ reads as F t( , )σ = cos sin sin sin sin sin sin sin cos sin at at a at a at σ σ σ σ σ σ ( ) − ( ) − ( ) − ( )     and ∆( ) sin cos sinσ σ σ= − + ( )[ ]2 1a aT . Therefore, ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 8 1136 E. KENGNE N k k aT aT k aT kk∆ = { } + − + ≤ ≤ + ∈     ∈π π π π π πZ Z∪ arcsin ( ) , , 2 1 2 2 . If we take H = R, we conclude from the above theorem that problem (10), (11) is properly posed in Cn( 0, T[ ], WΩ ±∞) with Ω = R \ N∆ . 1. Borok V. M., Fardigola L. V. Nonlocal properly posed boundary problem in the layer // Math. Note Acad. Sci. USSR. – 1990. – 48. – P. 20 – 25. 2. Kengne E. Criterion of the regularity of boundary problems with an integral in the boundary condition. – Moscow: VINITI, 1992. – Vol. 92. – 20 p. 3. Antepko I. I. On the boundary problem in an infinite layer for system of linear partial differential equations // News Kharkov Univ. – 1971. – Issue 67 (36). – P. 62 – 72. 4. Borok V. M., Antepko I. I. Criterion of the proper posedness of boundary problem in the layer // Teor. functs., Funkts. Analys i Pril. – 1976. – 26. – P. 3 – 9. 5. Kengne E., Pelap F. B. Regularity of two-point boundary-value problem // Afr. Math. – 2001. – 12, # 3. – P. 61 – 70. 6. Kengne E. Properly posed and regular nonlocal boundary-value problems for partial differential equations // Ukr. Math. J. – 2002. – 54, # 8. – P. 1135 – 1142. 7. Petrovskii I. G. On the Cauchy problem for system of linear partial differential equations in the domain on nonanalytical functions // Bull. Moscow State Univ. Sect. A. – 1938. – 1. – P. 1 – 72. 8. Gantmakher F. R. Theory of matrices. – Moscow: Nauka, 1988. – 552 p. 9. Petrovskii I. G. Lecture on the theory of ordinary differential equations. – Moscow: Nauka, 1970. – 279 p. Received 22.01.2004 ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 8