Influence of Copper Pretreatment on the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin
The solid-phase reactions of copper with tin are considered, and the porosity of the reaction products depending on the pretreatment of the copper substrate is investigated. Copper substrates for the reaction are prepared by electrodeposition of copper layers with thickness of up to 100 microns on t...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут металофізики ім. Г.В. Курдюмова НАН України
2018
|
| Назва видання: | Металлофизика и новейшие технологии |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/167717 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Influence of Copper Pretreatment on the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin / V.V. Morozovych, A.R. Honda, Yu.O. Lyashenko, Ya.D. Korol, O.Yu. Liashenko, С. Cserhát, A.M. Gusak // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 12. — С. 1649-1673. — Бібліогр.: 31 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-167717 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1677172025-02-09T12:22:48Z Influence of Copper Pretreatment on the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin Влияние предварительной обработки меди на фазо- и порообразование в твёрдофазных реакциях меди с оловом Вплив попереднього оброблення міді на фазо- та пороутворення у твердофазних реакціях міді з циною Morozovych, V.V. Honda, A.R. Lyashenko, Yu.O. Korol, Ya.D. Liashenko, O.Yu. Cserhát, С. Gusak, A.M. Дефекты кристаллической решётки The solid-phase reactions of copper with tin are considered, and the porosity of the reaction products depending on the pretreatment of the copper substrate is investigated. Copper substrates for the reaction are prepared by electrodeposition of copper layers with thickness of up to 100 microns on the rolled copper plates. The defects of substrates are determined by the different modes of electrodeposition—stationary, reversible, and stochastic ones. As shown, the thicknesses of the intermediate phases, their ratio, the number and spatial distribution of pores in the reaction products significantly depend on the mode of electrodeposition. The statistical dependences of the pore distribution along and across the interface as well as the characteristics of the roughness of the interface are revealed. Рассматриваются твёрдофазные реакции меди с оловом, и исследуется пористость продуктов реакции в зависимости от предварительной обработки медной подложки. Медные подложки для реакции готовятся путём электроосаждения слоёв меди толщиной до 100 мкм на прокатанные медные пластинки. Дефектность подложек определяется различными режимами электроосаждения: стационарным, реверсивным и стохастическим. Показано, что толщины промежуточных фаз, их соотношение, количество и пространственное распределение пор в продуктах реакции существенно зависят от режима электроосаждения. Установлены статистические зависимости распределения пор вдоль и поперёк интерфейса, а также характеристики его шероховатости. Розглядаються твердофазні реакції міді з циною, та досліджується поруватість продуктів реакції в залежності від попереднього оброблення мідного підложжя. Мідні підложжя для реакції готуються шляхом електроосадження прошарків міді товщиною до 100 мкм на прокатані мідні платівки. Дефектність підложжя визначається різними режимами електроосадження: стаціонарним, реверсним і стохастичним. Показано, що товщини проміжних фаз, їх відношення, кількість і просторовий розподіл пор у продуктах реакції істотно залежать від режиму електроосадження. Виявлено статистичні залежності розподілу пор вздовж і поперек інтерфейсу, а також характеристики його шерсткости. The authors gratefully acknowledge financial support from the Minis-try of Education and Science of Ukraine (state registration number: 0117U000577). The work is also partly supported by the European pro-ject EXMONAN EU Marie Curie FP7 (Grant # 612552). 2018 Article Influence of Copper Pretreatment on the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin / V.V. Morozovych, A.R. Honda, Yu.O. Lyashenko, Ya.D. Korol, O.Yu. Liashenko, С. Cserhát, A.M. Gusak // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 12. — С. 1649-1673. — Бібліогр.: 31 назв. — англ. 1024-1809 PACS: 61.43.Gt, 61.72.Ff, 64.75.-g, 68.35.Ct, 68.35.Dv, 68.35.Fx, 81.15.Pq DOI: 10.15407/mfint.40.12.1649 https://nasplib.isofts.kiev.ua/handle/123456789/167717 en Металлофизика и новейшие технологии application/pdf Інститут металофізики ім. Г.В. Курдюмова НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Дефекты кристаллической решётки Дефекты кристаллической решётки |
| spellingShingle |
Дефекты кристаллической решётки Дефекты кристаллической решётки Morozovych, V.V. Honda, A.R. Lyashenko, Yu.O. Korol, Ya.D. Liashenko, O.Yu. Cserhát, С. Gusak, A.M. Influence of Copper Pretreatment on the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin Металлофизика и новейшие технологии |
| description |
The solid-phase reactions of copper with tin are considered, and the porosity of the reaction products depending on the pretreatment of the copper substrate is investigated. Copper substrates for the reaction are prepared by electrodeposition of copper layers with thickness of up to 100 microns on the rolled copper plates. The defects of substrates are determined by the different modes of electrodeposition—stationary, reversible, and stochastic ones. As shown, the thicknesses of the intermediate phases, their ratio, the number and spatial distribution of pores in the reaction products significantly depend on the mode of electrodeposition. The statistical dependences of the pore distribution along and across the interface as well as the characteristics of the roughness of the interface are revealed. |
| format |
Article |
| author |
Morozovych, V.V. Honda, A.R. Lyashenko, Yu.O. Korol, Ya.D. Liashenko, O.Yu. Cserhát, С. Gusak, A.M. |
| author_facet |
Morozovych, V.V. Honda, A.R. Lyashenko, Yu.O. Korol, Ya.D. Liashenko, O.Yu. Cserhát, С. Gusak, A.M. |
| author_sort |
Morozovych, V.V. |
| title |
Influence of Copper Pretreatment on the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin |
| title_short |
Influence of Copper Pretreatment on the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin |
| title_full |
Influence of Copper Pretreatment on the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin |
| title_fullStr |
Influence of Copper Pretreatment on the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin |
| title_full_unstemmed |
Influence of Copper Pretreatment on the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin |
| title_sort |
influence of copper pretreatment on the phase and pore formations in the solid phase reactions of copper with tin |
| publisher |
Інститут металофізики ім. Г.В. Курдюмова НАН України |
| publishDate |
2018 |
| topic_facet |
Дефекты кристаллической решётки |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/167717 |
| citation_txt |
Influence of Copper Pretreatment on the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin / V.V. Morozovych, A.R. Honda, Yu.O. Lyashenko, Ya.D. Korol, O.Yu. Liashenko, С. Cserhát, A.M. Gusak // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 12. — С. 1649-1673. — Бібліогр.: 31 назв. — англ. |
| series |
Металлофизика и новейшие технологии |
| work_keys_str_mv |
AT morozovychvv influenceofcopperpretreatmentonthephaseandporeformationsinthesolidphasereactionsofcopperwithtin AT hondaar influenceofcopperpretreatmentonthephaseandporeformationsinthesolidphasereactionsofcopperwithtin AT lyashenkoyuo influenceofcopperpretreatmentonthephaseandporeformationsinthesolidphasereactionsofcopperwithtin AT korolyad influenceofcopperpretreatmentonthephaseandporeformationsinthesolidphasereactionsofcopperwithtin AT liashenkooyu influenceofcopperpretreatmentonthephaseandporeformationsinthesolidphasereactionsofcopperwithtin AT cserhats influenceofcopperpretreatmentonthephaseandporeformationsinthesolidphasereactionsofcopperwithtin AT gusakam influenceofcopperpretreatmentonthephaseandporeformationsinthesolidphasereactionsofcopperwithtin AT morozovychvv vliâniepredvaritelʹnojobrabotkimedinafazoiporoobrazovanievtvërdofaznyhreakciâhmedisolovom AT hondaar vliâniepredvaritelʹnojobrabotkimedinafazoiporoobrazovanievtvërdofaznyhreakciâhmedisolovom AT lyashenkoyuo vliâniepredvaritelʹnojobrabotkimedinafazoiporoobrazovanievtvërdofaznyhreakciâhmedisolovom AT korolyad vliâniepredvaritelʹnojobrabotkimedinafazoiporoobrazovanievtvërdofaznyhreakciâhmedisolovom AT liashenkooyu vliâniepredvaritelʹnojobrabotkimedinafazoiporoobrazovanievtvërdofaznyhreakciâhmedisolovom AT cserhats vliâniepredvaritelʹnojobrabotkimedinafazoiporoobrazovanievtvërdofaznyhreakciâhmedisolovom AT gusakam vliâniepredvaritelʹnojobrabotkimedinafazoiporoobrazovanievtvërdofaznyhreakciâhmedisolovom AT morozovychvv vplivpoperednʹogoobroblennâmídínafazotaporoutvorennâutverdofaznihreakcíâhmídízcinoû AT hondaar vplivpoperednʹogoobroblennâmídínafazotaporoutvorennâutverdofaznihreakcíâhmídízcinoû AT lyashenkoyuo vplivpoperednʹogoobroblennâmídínafazotaporoutvorennâutverdofaznihreakcíâhmídízcinoû AT korolyad vplivpoperednʹogoobroblennâmídínafazotaporoutvorennâutverdofaznihreakcíâhmídízcinoû AT liashenkooyu vplivpoperednʹogoobroblennâmídínafazotaporoutvorennâutverdofaznihreakcíâhmídízcinoû AT cserhats vplivpoperednʹogoobroblennâmídínafazotaporoutvorennâutverdofaznihreakcíâhmídízcinoû AT gusakam vplivpoperednʹogoobroblennâmídínafazotaporoutvorennâutverdofaznihreakcíâhmídízcinoû |
| first_indexed |
2025-11-25T23:48:25Z |
| last_indexed |
2025-11-25T23:48:25Z |
| _version_ |
1849808133438832640 |
| fulltext |
PACS numbers: 61.43.Gt, 61.72.Ff, 64.75.-g, 68.35.Ct, 68.35.Dv, 68.35.Fx, 81.15.Pq
Influence of Copper Pretreatment on the Phase and
Pore Formations in the Solid Phase Reactions of Copper with Tin
V. V. Morozovych, A. R. Honda, Yu. O. Lyashenko, Ya. D. Korol,
O. Yu. Liashenko, С. Cserhati*, and A. M. Gusak
Bohdan Khmelnytsky National University of Cherkasy,
81 Shevchenko Blvd.,
UA-18031 Cherkasy, Ukraine
*University of Debrecen,
1 Egyetem Ter.,
H-4032 Debrecen, Hungary
The solid-phase reactions of copper with tin are considered, and the porosity
of the reaction products depending on the pretreatment of the copper sub-
strate is investigated. Copper substrates for the reaction are prepared by
electrodeposition of copper layers with thickness of up to 100 microns on the
rolled copper plates. The defects of substrates are determined by the differ-
ent modes of electrodeposition—stationary, reversible, and stochastic ones.
As shown, the thicknesses of the intermediate phases, their ratio, the number
and spatial distribution of pores in the reaction products significantly de-
pend on the mode of electrodeposition. The statistical dependences of the
pore distribution along and across the interface as well as the characteristics
of the roughness of the interface are revealed.
Key words: copper–tin interface, diffusion, solid-state reactions, electrodep-
osition, defects, pore formation, pinning.
Розглядаються твердофазні реакції міді з циною, та досліджується пору-
ватість продуктів реакції в залежності від попереднього оброблення мід-
ного підложжя. Мідні підложжя для реакції готуються шляхом електро-
осадження прошарків міді товщиною до 100 мкм на прокатані мідні пла-
Corresponding author: V. V. Morozovych
E-mail: vladmorozua@gmail.com
Citation: V. V. Morozovych, A. R. Honda, Yu. O. Lyashenko, Ya. D. Korol,
O. Yu. Liashenko, С. Cserhati, and A. M. Gusak , Influence of Copper Pretreatment on
the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin,
Metallofiz. Noveishie Tekhnol., 40, No. 12: 1649–1673 (2018),
DOI: 10.15407/mfint.40.12.1649.
Ìåòàëëîôèç. íîâåéøèå òåõíîë. / Metallofiz. Noveishie Tekhnol.
2018, т. 40, № 12, сс. 1649–1673/ DOI: 10.15407/mfint.40.12.1649
Îттиски доступнû непосредственно от издателя
Ôотокопирование разрешено только
в соответствии с лицензиеé
2018 ÈМÔ (Èнститут металлофизики
им. Ã. Â. Êурдюмова ÍÀÍ Óкраинû)
Íапе÷атано в Óкраине.
1649
mailto:vladmorozua@gmail.com
https://doi.org/10.15407/mfint.40.12.1649
https://doi.org/10.15407/mfint.40.12.1649
1650 V. V. MOROZOVYCH, A. R. HONDA, Yu. O. LYASHENKO et al.
тівки. Дефектність підложжя визна÷ається різними режимами електроо-
садження: стаціонарним, реверсним і стохасти÷ним. Показано, що тов-
щини проміжних фаз, їх відношення, кількість і просторовиé розподіл
пор у продуктах реакції істотно залежать від режиму електроосадження.
Âиявлено статисти÷ні залежності розподілу пор вздовж і поперек інтер-
феéсу, а також характеристики éого шерсткости.
Ключові слова: інтерфеéс мідь–цина, дифузія, твердофазні реакції, елек-
троосадження, дефекти, пороутворення, пінінґування.
Рассматриваются твёрдофазнûе реакции меди с оловом, и исследуется
пористость продуктов реакции в зависимости от предварительноé обра-
ботки медноé подложки. Меднûе подложки для реакции готовятся путём
электроосаждения слоёв меди толщиноé до 100 мкм на прокатаннûе мед-
нûе пластинки. Дефектность подложек определяется разли÷нûми режи-
мами электроосаждения: стационарнûм, реверсивнûм и стохасти÷еским.
Показано, ÷то толщинû промежуто÷нûх фаз, их соотношение, коли÷е-
ство и пространственное распределение пор в продуктах реакции суще-
ственно зависят от режима электроосаждения. Óстановленû статисти÷е-
ские зависимости распределения пор вдоль и поперёк интерфеéса, а так-
же характеристики его шероховатости.
Ключевые слова: интерфеéс медь–олово, диффузия, твёрдофазнûе реак-
ции, электроосаждение, дефектû, порообразование, пиннинг.
(Received November 16, 2018)
1. INTRODUCTION
One of the most common reasons for chip failure is due to the soldered
copper/tin based contacts, that is, the soldered contacts are the weak-
est part of the chip [1, 2] and this is related, in particular, to the pore
formation in the contact zone. The temperature range is from room
temperature up to 250°C (typical range of packaging and operation of
the integrated circuits). In the solid phase reaction of copper with tin,
only two phases Cu6Sn5 (η-phase) and Cu3Sn (ε-phase) grow. In the pro-
cess of soldering, when the tin-based solder is liquid, the growth of the
scallop-like Cu6Sn5 phase is dominant, which occurs due to the rapid
diffusion of copper along liquid channels between the scallops [3–6]. In
this case, the formation of Cu3Sn phase layer during the first second is
generally suppressed, and then occurs, but much slower than the
growth of Cu6Sn5 [7]. At the stage of operation, when the solder is solid
(solid-state ageing), the growth rate of both phases becomes approxi-
mately the same [8]. The pore formation with the growth of Cu3Sn
phase is the main reason for the failure of the soldered contacts. The
cause of pore formation is the flow of vacancies in the direction of cop-
per, which arises as a result of the fact that, in the process of mutual
diffusion through the specified phase, copper diffuses much faster
INFLUENCE OF Cu PRETREATMENT ON THE PHASE AND PORE FORMATIONS 1651
than tin. As a result, vacancies are accumulated on the interface of
Cu3Sn/Cu and form a chain of pores. Since the difference of the com-
ponent mobility and the corresponding vacancy flux towards, the fast-
er component generates Kirkendall’s effect (the lattice flow as a
whole); that pore formation is known to be Kirkendall voiding in the
Anglo-Saxon literature. It is commonly called the Frenkel effect in the
journals of the former USSR. The ways to fight the Frenkel effect have
been looking for a long time. The oldest method known to us was pro-
posed by the group of Geguzin, in the 1970’s being associated with the
use of full compression [9, 10]. Namely, the supersaturation of vacan-
cies can be relaxed in two main ways: (1) the annihilation of vacancies
at boundary dislocations (K-sinks), which leads to the creep of the dis-
location and corresponding motion of atomic planes, that is to Kirken-
dall’s effect, and (2) the combination of vacancies in the pores (F-sinks)
without the motion of planes (Frenkel effect). Mathematical aspects of
competition between two types of sinks are described, in particular, in
[11, 12].
The idea of Geguzin’s team was simple: the suppression of F-sinks
by the pressure of several dozen atmospheres. As Geguzin and co-
authors showed, such pressures are sufficient to suppress pore for-
mation, but not sufficient for a significant decrease in the diffusion
rate. Indeed, in the experiments [9, 10] on copper/nickel alloy at a
pressure of less than a hundred atmospheres, pores were almost sup-
pressed, and the speed of Kirkendall’s effect increased approximately
twice. Unfortunately, in the formation and operation of chips, the ap-
plication of full compression is unrealistic, and therefore, other ways
of suppression are looked for. For example, pore formation may be re-
duced, if nickel is added to copper [13]. Another interesting way is the
use of nanotwinned copper [14], which can diminish pore formation.
However, the preparation of nanotwinned coating on copper is a rather
expensive and specific process. Therefore, the searches continue, and
the task of influencing on pore formation remains relevant.
It is intuitively clear that preprocessing of copper or the deposition
of additional layers of copper can affect the reaction of copper and tin
in various ways. There are, at least, 3 reasons for this as follow.
1. If an additional density of dislocations is formed as a result of
processing in copper, then, extra vacancies in the vicinity of the inter-
facial boundary of the ε-phase/copper receive additional K-sinks, on
which they can disappear without pore formation [15].
2. On the other hand, processing, which leads to an increase of the
dislocation density, usually simultaneously leads to a decrease of the
grain size, that is, to an increase of the density of triple joints of grain
boundaries. Triple joints can serve as centres for heterogeneous pore
formation.
3. Different types of processing leave a different roughness of the
1652 V. V. MOROZOVYCH, A. R. HONDA, Yu. O. LYASHENKO et al.
interface, including the average amplitude and the average length of
the ‘bends’ of future interfaced boundary.
In works [16, 17], the technology of obtaining layers of copper elec-
trodeposited in stationary, pulsed reverse and stochastic modes on
copper substrates was worked out. The application of the Chua genera-
tor model for nonlinear oscillations is described to construct a time se-
ries of stochastic voltage fluctuations on electrodes in the vicinity of
two stationary values. Two values of the voltage of the electrodeposi-
tion, calculated from the polarization curve for the given conditions of
electrodeposition, were applied for the experiment. While performing
the work, a hardware-software complex (HSC) was created to control
the electrolytic deposition process. The analysis of stationary and sto-
chastic regime effect of electrolytic deposition on the structure of the
obtained copper layers on copper substrates was carried out using x-
ray diffraction analysis and scanning electron microscopy. The analy-
sis of diffractograms shows that in the samples obtained after the sta-
tionary electrodeposition of copper, the size of the grains is smaller
compared with the initial samples of the textured rolled copper. It is
found that crystallites with the preferential orientation of planes (111)
and the presence of crystallites with orientation (220) and (200), which
are placed parallel to the surface of the sample, are formed in station-
ary electrodeposition modes. Electrodeposition in a pulsed reverse
mode shows that the orientation of grain planes (220) prevails in these
samples. In stochastic electrodeposition modes, an almost structurally
perfect polycrystalline layer of copper is formed. In these samples,
there is a full spectrum of the crystallite plane orientations (111),
(220) and (200) in the same proportions, which is similar to the struc-
ture of powder copper.
Scanning electron microscopy shows that the grain structures of the
stationary and stochastic modes of electrolytic deposition of copper
layers differ substantially in their morphological structure [16, 17]. In
the case of stochastic stress, the deposited layer of copper consists of
rounded monodisperse grains. Under constant voltage of electrodepo-
sition, both the grain of a lamellar structure and grains of irregular
shape are formed much larger than in the case of the use of stochastic
modes of voltage change. In addition, Ref. [17] points out that the
structure type of the electrodeposited copper layers affects the growth
result of intermediate phases during solid-phase reactions in the Cu–
Sn system. This effect is studied in detail in this paper.
The structure effect of the electrodeposited copper on copper sub-
strates under different current conditions on the result of solid phase
reactions with tin is studied in the paper. The modes of copper deposi-
tion are described in Sec. 2. Copper coatings obtained under different
modes of electrodeposition, are investigated using a scanning electron
microscope (SEM) and x-ray structure analysis. Subsequently, the ob-
INFLUENCE OF Cu PRETREATMENT ON THE PHASE AND PORE FORMATIONS 1653
tained electrodeposited samples are immersed in the molten tin for a
short time, and then, the obtained samples continue to anneal in solid
state for hundreds of hours. As a result, the evolution of phase thick-
ness, the shapes of interfaces, the number and distribution of pores are
found and their characteristics, depending on the method of copper
electrodeposition are compared (Section 3).
2. EXPERIMENT DESCRIPTION
The theory and technology of the stationary mode of electrodeposition
with the use of constant voltage applied to the electrodes of the elec-
trochemical cell are developed in the scientific literature in sufficient
detail [18]. The stationary mode of electrodeposition has a number of
disadvantages involving, for example, the uneven thickness of the
electrically deposited films. This is due to the instability of the sta-
tionary mode of electrodeposition, when the protrusions formed by
fluctuations on the electrodes lead to a decrease in the distance be-
tween them and, accordingly, to an increase in the flow of electrodepo-
sition in these areas, which leads to even greater growth of the formed
protrusions. Different types of heterogeneous electrodeposition modes
are used to fight this phenomenon [19–24], such as pulsed mode, har-
monic mode, reverse pulsed modes of electrodeposition. The most per-
fect surface coatings are obtained in the mode of the reverse pulsed
electrodeposition, when the cathode and the anode periodically change
places by changing the polarity of the current. The electrolytic deposi-
tion in this study was carried out in two stationary, slow and fast sto-
chastic and pulsed reverse modes. Initially, according to the specified
composition of the electrolyte, its temperature and sample sizes, a po-
larization curve was constructed experimentally, according to which
the basic modes of electrodeposition were selected. For electrodeposi-
tion of copper layers on copper substrates in various stationary and
non-stationary modes, the developed HSC [16, 17] was used that al-
lowed to maintain a given voltage on the electrodes of an electrochemi-
cal cell in a real-time mode and to record the corresponding values of
the current strength.
To implement the stochastic modes of electrodeposition, we used the
model of the Chua generator [25–27], namely, the model of a dynamic
system with the behaviour of a strange attractor. The application of
this model allows obtaining continuous transitions of the voltage of
electrodeposition between two stationary modes at random moments of
time. The course of the stochastic process was calculated first by the
methods of mathematical modelling, as a set of values of a random
function in successive moments of time. Calculated in this way, the
random function profile was restored in the HSC at two different time
scales. Two corresponding stochastic regimes (slow and fast) differed
1654 V. V. MOROZOVYCH, A. R. HONDA, Yu. O. LYASHENKO et al.
only in the time scale, in this case, by 500 times. The slow stochastic
regime corresponded to such a change in the voltage at the electrodes
with the time, when the polarization of the electrodes occurred faster
than the change in voltage over time. In this case, the functional de-
pendences of stresses and current forces are connected by a polariza-
tion curve determined in stationary conditions. In this case, the func-
tional dependences of the stresses and current strength are connected
by a polarization curve determined in stationary conditions. And, con-
versely, in a fast stochastic mode, the process of unsteady electrodepo-
sition occurred without such an adjustment of the current strength to
instant voltage values.
2.1. Sample Preparation
The process of electrodeposition was carried out on the copper sub-
strate of 1 mm thickness. The surfaces of the copper plates were par-
tially insulated to provide a surface area of 1 сm
2. The copper plates
used for electrodeposition and polarization curve construction were
grinded and polished using grinding SiC paper (P180, P1200, P2400).
After polishing, the copper plates were purified in an ultrasonic bath
with ethanol for 100 seconds. After ultrasonic cleaning, the copper
plates were homogenized by annealing at a temperature of 550°C for 2
hours in an argon atmosphere. Prior to electrodeposition, the samples
were further purified by electrochemical etching in an electrolyte,
maintaining the distance between the anode and the cathode of 5 cm.
The sample was subtracted for 10 minutes at a voltage U = 0.21 V (cur-
rent density was j = 0.022 A/cm2). Then, plates of copper were rinsed in
water. On the cleared copper plates, the copper layer was precipitated
in stationary mode with current density j = 0.022 A/cm2
for 10
minutes. For electrolytic deposition, we used an electrolyte of 0.36М
CuSO4⋅H2O + 1.22М H2SO4 composition.
2.2. Construction of a Polarization Curve
In accordance with the given conditions of electrolysis (the size of the
samples of 10×10 mm2
and the distance between the cathode and the an-
ode of 5 cm) in the galvanodynamic regime at a rate of 0.02 V/s, a polar-
ization curve was constructed. The constructed polarization curve
characterizes the deposition of copper on copper plates at a given con-
centration and temperature of the electrolyte and is shown in Fig. 1.
Based on the constructed polarization curve, the voltage intervals
corresponding to the activated and diffusion mode of electrodeposition
are determined. The stationary modes of electrodeposition were per-
formed according to the parameters of points 1 and 2 in Fig. 1. The sto-
INFLUENCE OF Cu PRETREATMENT ON THE PHASE AND PORE FORMATIONS 1655
chastic modes of electrodeposition were carried out using the model of
the Chua’s nonlinear oscillator generator when nonlinear voltage fluc-
tuations were carried out in the vicinity of points 1 and 2 with random
continuous transitions between them. In this case, the minimum volt-
age value was 0.17 V, maximum 0.56 V. At the first (0.24 V) and sec-
ond (0.49 V) stationary points, the maximum variations in the ampli-
tude of the voltage fluctuations were 0.07 V (see Fig. 2, a, b).
The control of deposition was carried out by means of fixing the to-
tal charge. In the experiments carried out, the value of the total passed
charge q = 86.54 C was chosen. Considering the current output (it has
been experimentally determined that for this electrolyte the current
output was about 55%), this total charge corresponded to the mass of
the sediment m = 33 mg, which corresponds to a thickness of about 100
microns in stationary modes of electrodeposition. The parameters of
electrolytic deposition in the case of stochastic, pulsed reversal, and
stationary modes are given in Table 1.
In the HSC, in each mode of electrodeposition, the corresponding
time dependences of the voltage were introduced and the correspond-
ing values of the current strength were measured. Figures 2, a–e show
fragments of time dependences of voltage and current in the case of
non-stationary modes.
The surfaces of the electrodeposited copper layers were investigated
by means of scanning electron microscopy (see Fig. 3).
As seen from the micrographs, the surfaces obtained during the
deposition in the first stationary (Sample 1) and reverse pulsed (Sam-
ple 5) modes are the most evenly filled with grains of copper precipi-
tate (Fig. 3, a, d). The surfaces obtained in the second stationary mode
and in both stochastic modes differ in the significant heterogeneity of
grain placement and their associations and have a globular structure.
It should be noted that the placement of globules in the second station-
ary mode is spatially heterogeneous. The globules themselves have sig-
Fig. 1. Galvanodynamic polarization curve obtained at Cu electrodeposition.
1656 V. V. MOROZOVYCH, A. R. HONDA, Yu. O. LYASHENKO et al.
nificant variations in their size. The sediment globules, obtained in the
stochastic modes, are more periodic and spatially homogeneous.
2.3. Integral Analysis of Defects
The methods of x-ray diffractometry were used to study the structural
state of electrically deposited layers of copper obtained under different
deposition conditions. The methods of analysing the defects of such
layers are described in [17]. In general, defects are related to the aver-
Fig. 2. Fragments of voltage and current time dependences in the case of: a,
b—slow stochastic; c, d—fast stochastic; e, f—pulsed reverse modes of elec-
trodeposition.
INFLUENCE OF Cu PRETREATMENT ON THE PHASE AND PORE FORMATIONS 1657
age density of deposition current. In our case, it is the smallest in re-
verse impulse deposition mode, increases in stationary mode (Sample
1) and is the largest in stationary (Sample 2) and in stochastic deposi-
tion modes. This is evident from the width of the diffraction lines on
the diffractograms depicted in Fig. 4. In Figure 4, lines of diffracto-
grams are set up to 100 units.
It is known that in the process of electrolytic deposition of a number
of metals, an axial growth texture with a crystallographic axis being
perpendicular to the surface of the sediment is formed [28, 29]. Meth-
ods for x-ray diffractometry were used to study the structural state of
electrolytic copper coatings obtained under different deposition condi-
tions. The obtained diffractograms (filtered FeKα radiation) in com-
parison with the standard (annealed compressed copper powder) and a
bar chart of the PDF-2 database are shown in Fig. 4. Relative intensi-
ties of diffraction peaks are presented in Table 2.
Qualitative analysis of diffractograms and data analysis of this Ta-
ble shows that, in the conditions of a stochastic current, a near-
polycrystalline precipitates with a slight tendency toward texture
along the direction of <110> are formed. It can be noted that there is
no significant influence on the orientational structural characteristics
of the velocity of stochastic oscillations. In case of stationary deposi-
tion (constant current), regardless of the cathode potential, the tex-
ture (110) of the precipitate becomes sharper, as can be seen by increas-
TABLE 1. Parameters of electrodeposition.
No. Deposition mode Voltage
U, V
Current density
j, A/cm2
∆m/S,
kg/m2
Deposition
time, min
Sample 1 Stationary No. 1 0.24 0.0113 3.32 110
Sample 2 Stationary No. 2 0.499 0.0431 3.35 47
Sample 3 Slow stochastic (t = 1 s)
(x0 = 0.2, α = 7, β = 10 in
Chua’s model [16, 17])
Umin =
= 0.17
Umax =
= 0.56
Ust = 0.49
Ust = 0.24
jmin = 0.0138,
jmax = 0.031
3.32 55
Sample 4 Fast stochastic (t = 20 ms)
(x0 = 0.2, α = 7, β = 10 in
Chua’s model [16, 17])
Umin =
= 0.18
Umax =
= 0.56
Ust = 0.49
Ust = 0.25
jmin = 0.010
jmax = 0.042
3.47 58
Sample 5 Pulse reversible (fill
factor D = 0.66, τ = 3 s)
−0.119
+0.367
−0.0171
+0.0338
2.95 120
1658 V. V. MOROZOVYCH, A. R. HONDA, Yu. O. LYASHENKO et al.
ing the relative intensity of the copper diffraction line (220). Under
the pulsed reverse mode, the electrolytic precipitate has a pronounced
axial texture along the crystallographic direction <110> perpendicu-
lar to the surface of the sample. It can be assumed that the variation of
the parameters (amplitude and duration) of current pulses in the for-
ward and reverse directions will affect the degree of orientation of the
ordering copper crystallites.
It is known that submicron sizes of crystallites, microstresses and
defective structure lead to the expansion of diffraction lines of the
a
b
c
d
e
Fig. 3. Micrographs in secondary elec-
trons of the electrodeposition layers’
surfaces of Samples: a—1; b—2; c—
3; d—4; e—5.
INFLUENCE OF Cu PRETREATMENT ON THE PHASE AND PORE FORMATIONS 1659
sample. Figure 4, b shows the high-rise peak (222) of electrolytic pre-
cipitates, obtained by the direct deposition current (Sample 1), for the
reverse pulsed mode in comparison with the standard (annealed copper
powder). It is clear by the degree of ‘splitting’ of the Kα doublet that a
more perfect structure has a precipitate obtained in reverse pulsed
mode. Crystals with defective structure are formed at constant current
of electrodeposition.
2.4. The Procedure of Obtaining and Diffusion Annealing of Samples
After electrolytic precipitation of copper, the obtained plates were
washed from the residual electrolyte and dried. Before immersion, the
copper plates were heated to about 100°C and treated with commercial
resin soft activated flux (Weld Team Decapant Liquid, Lincoln Electric
Group) to prevent the formation of oxides on the sample surface. The
samples were immersed in molten tin at 250°С for about 1 second. The
diffusion annealing of the samples was carried out in the Ar atmos-
Fig. 4. Diffractograms of the samples with different modes of the copper elec-
trodeposition for diffraction angles: à, b—50°–140°, c, d—135°–138°; 1—
Sample 5; 2—Sample 1; 3—Standard (bar chart of the PDF-2 database); 4—
Sample 2; 5—Sample 4; 6—Sample 3; 7—Standard (annealed copper powder).
1660 V. V. MOROZOVYCH, A. R. HONDA, Yu. O. LYASHENKO et al.
phere at a temperature of 210°C for 190 hours.
3. CHARACTERIZATION OF SAMPLE CONTACT ZONE
The following characteristics of Cu–Sn samples after diffusion anneal-
ing are compared.
1. The average thicknesses of the continuous layers of the η-Cu6Sn5
and ε-Cu3Sn phases were determined by dividing the corresponding to-
tal area of the REM images, occupied by the phase, by the total length
of the contact surface.
2. To characterize the roughness of the boundary, the following sta-
tistical parameters were used: Rq—root mean squared (the mean square
value of the deviation profile by the coordinate y from the middle line,
which is parallel to the x-axis),
2
1
1
,
n
q i
i
R y
n =
= ∆∑ (1)
i iy y y∆ = − ; (2)
Rv—maximum valley depth,
minv iR y= ∆ ; (3)
Rp—maximum peak height,
maxp iR y= ∆ ; (4)
Rsk—skewness,
TABLE 2. Relative intensities of diffraction maxima electrodeposited copper
layers.
Crystallographic indices of families of
atomic planes (Miller’s indices) (111) (200) (220) (311) (222)
Sample 1 100 34 74 35 10
Sample 2 100 30 82 31 8
Sample 3 100 36 44 32 11
Sample 4 100 34 28 30 11
Sample 5 37 9 100 20 6
Standard (annealed copper powder) 100 43 30 57 21
Standard (bar chart of the PDF-2 database) 100 43 17 16 5
INFLUENCE OF Cu PRETREATMENT ON THE PHASE AND PORE FORMATIONS 1661
3
3 1
1 n
sk ii
q
R y
nR =
= ∆∑ ; (5)
Rku—kurtosis,
4
4 1
1 n
ku ii
q
R y
nR =
= ∆∑ ; (6)
λ—the average period of the profile inequalities,
Change
2
L
N
λ = , (7)
where NChange—the number of changes in deviation sign ∆yi relative to
the middle line on the interval L. For filtering of high-frequency tran-
sitions through the middle line, an anti-aliasing Calman filter was used
[30].
3. Average porosity was determined by the ratio of the cross-
sectional area of pores dSvoid
to the total area of the phases dSphase
on the
two-dimensional sections.
4. Percentage of pores on interface (pores on the interface are most
dangerous for strength of contact).
5. Number of pores per unit of length.
6. Distribution of pores along the interface
void( )x dN d xρ ∆ = ∆ or,
more precisely, the distribution of distances between adjacent pores.
7. Distribution of the number of pore centres perpendicular to the
interface
void( ) / .y dN dyρ =
8. Distribution of the cross-sectional area of pores perpendicular to
the interface
void( ) / .S y dS dyρ =
4. RESULTS AND DISCUSSION
4.1. Characteristic SEM Images of the Contact Area after Annealing
We analyse the surface images of the samples obtained using a raster
electron microscope for the presence of characteristic structural ele-
ments of the sample diffusion zone, namely, phase boundaries and
thicknesses, pore availability and distribution.
It should be noted that the usual polishing modes with diamond and
corundum paste do not allow obtaining the sample surface being suita-
ble for porosity analysis due to the high plasticity of copper and the
corresponding rubbing of these pores even with finely dispersed
pastes. The visualization of the undistorted interphase boundaries and
defect boundaries became possible after the procedure of ion-plasma
cleaning of the annealed samples.
1662 V. V. MOROZOVYCH, A. R. HONDA, Yu. O. LYASHENKO et al.
Pretreatment of SEM images was carried out by Gaussian and Un-
sharp blurring methods according to the procedures described in [31].
In Ref. [31], algorithms for pretreatment images using appropriate
matrix filters have been developed to improve the identification of the
boundaries of structural elements, analysis of different types of struc-
tural elements (calculating the phase areas and finding the number and
calculating the size of structural defects). The presence of white noise
in SEM images affects the determination of boundary positions of
structural elements of the diffusion zone. First, the Gaussian blurring
a
b
c
d
e
Fig. 5. Micrographs of the surfaces
after ion milling for Samples: 1 (à); 2
(b); 3 (c); 4 (d); 5 (e).
INFLUENCE OF Cu PRETREATMENT ON THE PHASE AND PORE FORMATIONS 1663
method was used to get rid of noise in grey colour gradients; the meth-
od averages the value of grey colour gradient in pixels of the image
concerning their surroundings, which makes it possible to improve the
result of calculating the positions of the interphase boundaries. At the
next stage of sample image processing, a method of Unsharp-blurring
of the image elements was used that improved the identification of
topological defects (Fig. 5). Here, due to the increase of local contrast,
as a result of the application of Unsharp-blurring method, the accura-
cy of the analysis of voids and pores in SEM images increases as the
boundaries of these defects on SEM images become more contrasting.
The common characteristic feature of the most samples is the large
roughness of the original surface, which most likely leads to a signifi-
cant distortion of interphase boundary in the process of solid phase re-
actions and even the separation of a significant proportion of interme-
tallics (spalling). This is especially true for coatings obtained in sto-
chastic modes and at high densities of deposition currents. It should be
noted that determining phase thickness and other characteristics of
the contact zones, only the areas forming the percolation cluster were
taken into account. In this case, the isolated islands of intermetallics
that were ‘immured’ in the tin matrix were not taken into account in
the calculation of characteristics.
4.2. Analysis of Diffusion Zone and Statistical Dependence of Pores
along and across the Interface
To analyse the porosity of phase layers for Samples 1–5, the averaged
statistical parameters presented in Table 3 were calculated.
Average radius of voids was similar for all samples as it is indicated
in the Table 3. With increase of the current density, the average dis-
tance between voids and Cu/Cu3Sn interface increases. This distance is
particularly large in samples obtained from stochastic precipitation
regimes. The reason may consist in the fact that, in these modes, dislo-
cation density of the copper substrate is greater, i.e., the K-sinks can
delay a significant part of nonequilibrium vacancies, thereby, impov-
erishing the portions of the phase region near the boundary.
TABLE 3. Averaged statistical parameters of porosity phase layers after an-
nealing in a solid phase at 210°C for 190 hours.
Name Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Average radius of pores, µm 0,25 0,29 0,25 0,26 0,23
Average distance from pores
to interface Cu/Cu3Sn, µm 1,94 2,98 5,72 3,96 2,41
1664 V. V. MOROZOVYCH, A. R. HONDA, Yu. O. LYASHENKO et al.
4.2.1. Average Thicknesses of Continuous Layers of Phases η-Cu6Sn5
and ε-Cu3Sn
While measuring and analysing phase layer thicknesses theoretically,
one should consider the following parameters: a substantial part of the
reaction takes place for a short period of time during which the solid
copper interacts with the liquid tin. In this case, the main growing
phase is the scallop-like Cu6Sn5 phase. If the interface were flat, the
phase thickness would be determined by the rate of supplying copper to
the molten tin through the channels between the scallops [3].
3
9 ( )
,
2
b e
i
D C C
R t
C
δ −
= (8)
where D = 10−9
m
2/s [8], δ = 2.5⋅10−9
m [8], (C
b
– C
e) = 8.75⋅10−3
[8], Ci =
= 6/11 [8], t = 2 s.
In the latter formula, 2 seconds instead of 1 second is taken as a re-
action time (the time of the very immersion), since the tin remains liq-
uid for some time after taking the sample out. In the mode of solid-
phase diffusion in the copper/tin system, the kinetics of phase growth
should be determined by the equations derived from the equations of
flow balance in the case of plane interphase boundaries [8]. According
to the results of work [8], one could expect the ratio of phase thickness
to the order of one in the case of solid-phase diffusion annealing. The
calculated phase thicknesses are shown in Table 4.
As we can see, the thickness of two phases is about ten microns,
which is much greater than the estimate of Cu6Sn5 phase thickness
immediately after the liquid phase reaction. It means that the initial
stage of the reaction can be neglected in this case. The ratio between
phase thicknesses is really close to one in four cases of five modes ex-
cept for the stationary mode with high current density, when Cu6Sn5
phase thickness exceeds Cu3Sn phase thickness almost by three times.
In addition, in the fast stochastic mode (Sample 4), Cu6Sn5 phase
TABLE 4. Averaged thicknesses of phase layers after annealing in a solid
phase at 210°C for 190 hours.
Name Cu3Sn, µm Cu6Sn5, µm
Sample 1 6.5 9.5
Sample 2 9.2 26.1
Sample 3 13.2 15.1
Sample 4 9.8 6.2
Sample 5 7.9 8.7
INFLUENCE OF Cu PRETREATMENT ON THE PHASE AND PORE FORMATIONS 1665
thickness is almost 1.5 times less than Cu3Sn. This is due to the wavi-
ness of the source interface and further fitting of the protrusions to
the formation of the isolated islets of Cu6Sn5 phase, which are not tak-
en into account in the integral thickness of the layers.
4.2.2. Roughness
The roughness parameters of Cu/Cu3Sn interface for Samples 1–5 are
shown in Table 5.
Table 5 shows that the samples (Sample 3 and Sample 4) obtained in
stochastic modes have the highest values of height difference in respect
to the middle line (parameters Rv, Rp) as well as the mean square profile
(Rp) of the profile deviation (the mean square of absolute values of the
profile deviations from the middle line). In Samples obtained in sta-
tionary modes, the asymmetry coefficient (Rsk) is negative that means
that the absolute values of hollow depths are slightly larger than the
absolute values of peak heights. Samples 4 and 5 have the narrowest
distributions of absolute profile deviations from the middle line (Rku).
The average step of the profile λ irregularities in the case of stochastic
modes of electrodeposition was less than in stationary and reverse
pulsed modes. This seems one of the reasons of additional spalling.
4.2.3. Average Porosity
Average porosity samples after five deposition modes and after fur-
ther reactions is presented in Fig. 6.
Consequently, the ratio of pore total area to the cross-sectional area
of intermetallics proves to be maximal for the maximum deposition
current. When decreasing the deposition current, this porosity de-
creases, if both stochastic regimes are not taken into account. The pos-
sible is an interrelation between grain size and the density of the void
nucleation sites. The grain size becomes smaller in copper coating with
TABLE 5. Statistical parameters of the interface roughness phase layers after
annealing in the solid phase at 210°C for 190 hours.
Name Rq, µm Rv, µm Rp, µm Rsk Rku λ, µm
Sample 1 1.5 3.2 3.1 −0.05 2.31 23.5
Sample 2 2.4 5.5 3.7 −0.23 1.98 83.5
Sample 3 8.6 12.5 19.3 0.57 2.04 7.4
Sample 4 9.1 14.1 25.2 0.87 3.48 3.9
Sample 5 3.5 8 8.6 0.49 3.9 31.9
1666 V. V. MOROZOVYCH, A. R. HONDA, Yu. O. LYASHENKO et al.
larger density of deposition current. Therefore, the density of possible
centres of pore formation—triple joints of grain boundaries with the
Cu/Cu3Sn interface becomes larger. As we can see below, the effective
voltage in pulse reverse mode is lower than in stationary modes. There-
fore, it is clear that, in this mode, one should expect larger grain sizes
and, consequently, lower density of joints and less porosity.
4.2.4. Percentage Ratio of Pore Number on Cu/Cu3Sn Interface
The relative proportion of pores contained in the moving interface of
Cu/Cu3Sn is shown in Fig. 7. In Ref. [15], the theory of kinetic pinning
of pores on the mobile interface of Cu/Cu3Sn was proposed as an addi-
tional factor to Ziner pinning by capillary forces. The idea is that the
gradient of vacancy concentration in Cu3Sn phase creates an additional
driving force in the process of approaching a pore to the interface. This
gradient depends on the defect of copper matrix, more precisely, on the
Fig. 6. Average porosity of samples.
Fig. 7. Percentage of pores on interface.
INFLUENCE OF Cu PRETREATMENT ON THE PHASE AND PORE FORMATIONS 1667
density of dislocation sinks in copper, which depends on pretreatment.
In Ref. [15], the following conclusion was made: ‘More defects, less
pinning’. The same picture is observed in comparing modes 1 and 2.
This rule seems to be applied in the case of stochastic deposition modes.
4.2.5. Number of Pores per Unit of Length
To determine the number of pores per unit of length of the interface,
the average distance between the pores along the interface was initially
calculated, and the value of 1 /l l= was then found. This parameter
has a clear physical content only for the relatively small roughness of
the interface observed after the deposition in modes 1, 2, 5. Here, for
better comparison, we introduced an effective voltage for mode 5:
ef .
U t U t
U
t t
+ + − −
+ −
−
=
+
(9)
According to our parameters U
+
= 0.367 V, U
−
= 0.119 V, t
+/t−
= 2, we
get Uef = 0.205 V. The results of comparison are presented in Table 6.
We see that there is approximately a linear empirical relationship be-
tween the applied effective voltage during the deposition and the num-
ber of pores per unit of length of the interface.
1
.kU
l
≈ (10)
We did not include the samples obtained in stochastic modes (Sam-
ple 3 and Sample 4) in the present analysis, since it is difficult to speak
about the x-axis as a measure of displacement along the interface in
these samples. As we can see from the SEM images mentioned above,
the total length of bends is greater than the length of the interface
along the x-axis.
4.2.6. Distribution of Pores along the Interface
Ideally, if the interface was flat and the origin of pores on this inter-
TABLE 6. Dependence of pore density on effective voltage for non-stochastic
regimes.
Name Sample 1 Sample 2 Sample 5
Uef 0.24 V 0.49 V 0.205 V
1 / l 0.75 µm−1 1.23 µm−1 0.59 µm−1
(1 / ) /l U 3.1 µm−1
V
−1 2.5 µm−1
V
−1 2.9 µm−1
V
−1
1668 V. V. MOROZOVYCH, A. R. HONDA, Yu. O. LYASHENKO et al.
face was completely random, one would expect the Poisson distribution
for the histogram of distance distribution between the pores:
0( ) exp .
x
x
∆ ρ ∆ = ρ − λ
(11)
If pores like some places of the interface more than others, that is, if
there are certain areas of more favourable pore formation, the distri-
bution can be, for example, two-mode one:
Fig. 8. The histograms of pore distri-
bution along the interface of Sample: 1
(à); 2 (b); 3 (c); 4 (d); 5 (e).
INFLUENCE OF Cu PRETREATMENT ON THE PHASE AND PORE FORMATIONS 1669
10 20
1 2
( ) exp exp .
x x
x
∆ ∆
ρ ∆ = ρ − + ρ − λ λ
(12)
The obtained results show that, the approximation by lognormal dis-
tribution fits more than the Poisson one, especially for non-monotonic
histograms.
The histograms in Fig. 8 show that distance distributions are very
far from the Poisson one, and therefore, the formation of pores on the
interface is a correlated effect.
4.2.7. Distribution of the Number of Pore Centres Perpendicular
to the Interface
In virtually all cases, the peak of pore distribution is fixed directly at
the interface itself, indicating the pore pinning by the moving inter-
face.
4.2.8. Distribution of the Cross-Sectional Area of Pores Perpendicular
to the Interface
A similar picture is observed for the distributions of both pore areas
and pore centres (Fig. 9), i.e., there is not only maximum percentage of
pore centres, but also the maximum percentage of pore cross sections
near the interfaces (Fig. 10). That is, the pores near the interface are
also quite large.
In the case of small deposition current, most of all pores are located
near the interface, and in the case of stochastic modes, the number of
pores in the middle of intermetallic layers significantly exceeds the
number of pores on the interface.
5. CONCLUSIONS
The hypothesis about the influence of pretreatment of the rolled cop-
per plates by using various modes of electrodeposition of copper on
them, on the defect of the contact zone after solid-phase copper–tin
reactions is tested.
The peculiarity of the conducted research is the use of not only depo-
sition modes with constant or periodic current, but also the implemen-
tation of fast and slow stochastic modes implemented by the developed
hardware and software complex. The stochastic modes of electrodepo-
sition were obtained on the basis of the Chua generator model of ran-
dom oscillations at two stationary points. Stationary states were se-
lected from the analysis of polarization curve according to the condi-
1670 V. V. MOROZOVYCH, A. R. HONDA, Yu. O. LYASHENKO et al.
tions of electrodeposition.
So, there are results as follow.
1. The following regularity is confirmed: the higher the electrodeposi-
tion current density, the greater the defect of coating and the greater
the porosity of Cu3Sn phase occurring during the solid phase reaction
between copper and tin.
2. In particular, the number of pores per unit of length of the interface
is approximately proportional to the voltage during depositing copper
on copper.
3. The percentage of pores addicted to moving interface also depends
Fig. 9. The histograms of number of
pores centres distribution perpendicu-
lar to the interface of Sample: 1 (à); 2
(b); 3 (c); 4 (d); 5 (e).
INFLUENCE OF Cu PRETREATMENT ON THE PHASE AND PORE FORMATIONS 1671
on the defect. This confirms the hypothesis of work [15]: ‘More de-
fects, less pinning’.
4. The distance distribution between pores does not correspond to Pois-
son one and is well approximated by the lognormal distribution, which
indicates the correlation of pore formation in different places.
5. The distribution of pores by distances from the interface is deter-
mined for the first time. It shows an abnormal accumulation of pores
on the interface itself or at a short distance from it. The corresponding
analytic approximation will be discussed in further paper.
Fig. 10. The histograms of cross-
sectional area of pores distribution
perpendicular to the interface in Sam-
ple: 1 (à); 2 (b); 3 (c); 4 (d); 5 (e).
1672 V. V. MOROZOVYCH, A. R. HONDA, Yu. O. LYASHENKO et al.
6. The mechanical strength of the contact is determined by not only the
thickness of phase layers but also the roughness and geometry of the
interface. It is quite possible that the abnormal roughness obtained by
stochastic modes can significantly affect the strength with respect to
the directed loads.
ACKNOWLEDGEMENTS
The authors gratefully acknowledge financial support from the Minis-
try of Education and Science of Ukraine (state registration number:
0117U000577). The work is also partly supported by the European pro-
ject EXMONAN EU Marie Curie FP7 (Grant # 612552).
REFERENCES
1. K. N. Tu, Electronic Thin-Film Reliability (Cambridge University Press: 2010).
2. K. N. Tu, Solder Joint Technology (New York: Springer: 2007).
3. A. M. Gusak and K. N. Tu, Phys. Rev. B, 66, No. 11: 115403 (2002).
4. K. M. Tu, A. M. Gusak, and M. Li, J. Appl. Phys., 93, No. 3: 1335 (2003).
5. J. O. Suh, K. N. Tu, G. V. Lutsenko, and A. M. Gusak, Acta Mater., 56, No. 5:
1075 (2008).
6. O. Yu. Liashenko and F. Hodaj, Acta Mater., 99: 106 (2015).
7. O. Yu. Liashenko, S. Lay, and F. Hodaj, Acta Mater., 117: 216 (2016).
8. O. Yu. Liashenko, A. M. Gusak, and F. Hodaj, J. Mater. Sci.: Mater. Electron.,
25, No. 10: 4664 (2014).
9. Ya. E. Geguzin, N. Ch. Bao, and L. N. Paritskaya, Fiz. Met. Metalloved., 27,
No. 3: 450 (1969) (in Russian).
10. Ya. Ye. Geguzin, Diffuzionnaya Zona [Diffusion Zone] (Moscow: Nauka: 1979)
(in Russian).
11. A. M. Gusak, and N. V. Storozhuk, Phys. Metals Metallogr., 114, No. 3: 197
(2013).
12. T. V. Zaporozhets, N. V. Storozhuk, and A. M. Gusak, Metallofiz. Noveishie
Tekhnol., 38, No. 10: 1279 (2016).
13. Y. W. Wang, Y. W. Lin, and C. R. Kao, Microelectronics Reliability, 49, No. 3:
248 (2009).
14. T.-C. Liu, C.-M. Liu, Y.-S. Huang, C. Chen, and K.-N. Tu, Scr. Mater., 68,
No. 5: 241 (2013).
15. A. M. Gusak, T. V. Zaporozhets, and J. Janczak-Rusch, Philos. Mag. Lett., 97,
No. 1: 1 (2017).
16. Yu. V. Nikolenko, V. A. Diduk, Ya. D. Korol, and Yu. O. Lyashenko, Bulletin of
Cherkasy University. Series ‘Physics and Mathematics’, 1: 26 (2016)
(in Ukrainian).
17. V. M. Tyutenko, V. V. Morozovych, V. A. Diduk, S. O. Kolinko, and
Yu. O. Lyashenko, Bulletin of Cherkasy University. Series ‘Physics
and Mathematics’, 1: 63 (2017) (in Ukrainian).
18. Elektroosazhdenie Metallicheskikh Pokrytiy: Spravochnik [Electrodeposition of
Metallic Coatings: Handbook] (Eds. M. A. Belenkiy and A. F. Ivanov) (Moscow:
https://doi.org/10.1017/CBO9780511777691
https://doi.org/10.1007/978-0-387-38892-2
https://doi.org/10.1103/PhysRevB.66.115403
https://doi.org/10.1063/1.1517165
https://doi.org/10.1016/j.actamat.2007.11.009
https://doi.org/10.1016/j.actamat.2007.11.009
https://doi.org/10.1016/j.actamat.2015.07.066
https://doi.org/10.1016/j.actamat.2016.07.021
https://doi.org/10.1007/s10854-014-2221-7
https://doi.org/10.1007/s10854-014-2221-7
https://doi.org/10.1134/S0031918X13030071
https://doi.org/10.1134/S0031918X13030071
https://doi.org/10.15407/mfint.38.10.1279
https://doi.org/10.15407/mfint.38.10.1279
https://doi.org/10.1016/j.microrel.2008.09.010
https://doi.org/10.1016/j.microrel.2008.09.010
https://doi.org/10.1016/j.scriptamat.2012.10.024
https://doi.org/10.1016/j.scriptamat.2012.10.024
https://doi.org/10.1080/09500839.2016.1262559
https://doi.org/10.1080/09500839.2016.1262559
INFLUENCE OF Cu PRETREATMENT ON THE PHASE AND PORE FORMATIONS 1673
Metallurgiya: 1985) (in Russian).
19. K. I. Popov, S. S. Djokić, N. D. Nikolić, and V. D. Jović, Morphology
of Electrochemically and Chemically Deposited Metals (Switzerland: Springer:
2016).
20. A. A. Medvedev and S. Semenov, Tekhnologii v Elektronnoy Promyshlennosti,
3: 68 (2005) (in Russian).
21. M. Kapitsa, Tekhnologii v Elektronnoy Promyshlennosti, 2: 20 (2006)
(in Russian).
22. A. B. Kilimnik, Vestnik TGTU, 14, No. 4: 903 (2008) (in Russian).
23. Z. Stevich, M. Raychich-Vuyasinovich, and Z. Stoilkovich, Tekhnologiya
i Konstruirovanie v Elektronnoy Apparature, 5: 51 (2003) (in Russian).
24. D. Yu. Ushchapovskiy, O. V. Linyucheva, M. I. Donchenko, M. V. Bik, and
A. S. Tsimbalyuk, Naukovi Visti NTUU ‘KPI’, 2: 114 (2016) (in Ukrainian).
25. V. T. Hrynchenko, V. T. Matsypura, and A. A. Snarskyy, Vvedeniye v
Nelineynuyu Dinamiku. Khaos i Fraktaly [Introduction to Nonlinear Dynamics.
Chaos and Fractals] (Moscow: LKI: 2007) (in Russian).
26. L. Chua, IEEE Transactions on Circuits and Systems, 27, No. 11: 1059 (1980).
27. T. A. Matsumoto, IEEE Transactions on Circuits and Systems, 31, No. 12:
1055 (1984).
28. G. Wassermann and J. Grewen, Tekstury Metallicheskikh Materialov [Textures
of Metallic Materials] (Moscow: Metallurgiya: 1974) (Russian translation).
29. S. M. Kochergin and A. V. Leontiev, Obrazovanie Tekstur Pri Elektrokristallizatsii
Metallov [Texture Formation During Electrocrystallization of Metals] (Moscow:
Metallurgiya: 1974) (in Russian).
30. M. S. Grewal and A. P. Andrews, Kalman Filtering—Theory and Practice Using
MATLAB (Wiley: 2001).
31. V. V. Morozovych, A. R. Honda, and Yu. O. Lyashenko, Bulletin of Cherkasy
University. Series ‘Applied Mathematics. Computer Science’, 1: 14 (2017)
(in Ukrainian).
https://doi.org/10.1007/978-3-319-26073-0
https://doi.org/10.1007/978-3-319-26073-0
https://doi.org/10.20535/1810-0546.2016.2.60951
https://doi.org/10.1109/TCS.1980.1084745
https://doi.org/10.1109/TCS.1984.1085459
https://doi.org/10.1109/TCS.1984.1085459
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /None
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Error
/CompatibilityLevel 1.4
/CompressObjects /Tags
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.0000
/ColorConversionStrategy /CMYK
/DoThumbnails false
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams false
/MaxSubsetPct 100
/Optimize true
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments true
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Apply
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages true
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth -1
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /DCTEncode
/AutoFilterColorImages true
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages true
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth -1
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /DCTEncode
/AutoFilterGrayImages true
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages true
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile ()
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/CreateJDFFile false
/Description <<
/ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
/BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
/HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
/HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
/HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
/LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
/RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
/SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
/SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
/UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
/ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /ConvertToCMYK
/DestinationProfileName ()
/DestinationProfileSelector /DocumentCMYK
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure false
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles false
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /DocumentCMYK
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /UseDocumentProfile
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|