Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part 1: cold temperature indices
Objective. This paper deals with an estimation of the climate change at the Antarctic Peninsula region. During last decades, the most significant warming is observed in Polar regions, particularly in the Antarctic Peninsula region, where the Ukrainian Antarctic Akademik Vernadsky station is located....
Gespeichert in:
| Datum: | 2019 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний антарктичний науковий центр МОН України
2019
|
| Schriftenreihe: | Український антарктичний журнал |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/168295 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part 1: cold temperature indices / A. Chyhareva, S. Krakovska, D. Pishniak // Український антарктичний журнал. — 2019. — № 1 (18). — С. 62-74. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-168295 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1682952025-02-09T09:34:22Z Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part 1: cold temperature indices Кліматичні проекції в районі Антарктичного півострова до кінця XXI століття. Частина 1: індекси холоду Chyhareva, A. Krakovska, S. Pishniak, D. Гідрометеорологічні та океанографічні дослідження Objective. This paper deals with an estimation of the climate change at the Antarctic Peninsula region. During last decades, the most significant warming is observed in Polar regions, particularly in the Antarctic Peninsula region, where the Ukrainian Antarctic Akademik Vernadsky station is located. Therefore, the providing of the complex estimation of climate change trend is an important task for the region. These changes are taking place nowadays and will happen in the future. So, the main objective of the study is to estimate changes of climate characteristics in the Antarctic Peninsula region in the 21st century, based on calculation of the relevant climate indices. The projections of the temperature and precipitation characteristics in the Antarctic Peninsula region and Akademik Vernadsky station area for RCP4.5 and RCP8.5 scenarios are the objects of the research. Стаття присвячена оцінці змін, що відбуваються в районі Антарктичного півострова. Впродовж останніх десятиліть найсуттєвіше потепління в кліматичній системі спостерігається в полярних регіонах, зокрема в районі Антарктичного півострова, де розташована Українська антарктична станція «Академік Вернадський». У зв’язку з цим необхідно забезпечити кращу комплексну оцінку тенденцій кліматичних змін, які вже зафіксовані та прогнозуються в майбутньому. Мета дослідження — оцінити зміни кліматичних характеристик в регіоні Антарктичного півострова в ХХІ столітті, на основі обчислення відповідних кліматичних показників. Об’єкт дослідження: проекції характеристик температури повітря та режиму зволоження в районі Антарктичного півострову та Української антарктичної станції «Академік Вернадський» за сценаріями RCP4.5 та RCP8.5 (Representative Concentration Pathway, RCP, Траєкторії репрезентативних концентрацій). Методами дослідження є чисельне моделювання та статистичний аналіз даних регіональних кліматичних моделей. Authors thank Santander Me teorology Group and Maialen Iturbide for assistance with climate4R framework and data processing that greatly helped working on this paper. 2019 Article Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part 1: cold temperature indices / A. Chyhareva, S. Krakovska, D. Pishniak // Український антарктичний журнал. — 2019. — № 1 (18). — С. 62-74. — Бібліогр.: 19 назв. — англ. 1727-7485 https://nasplib.isofts.kiev.ua/handle/123456789/168295 551.582.2 en Український антарктичний журнал application/pdf Національний антарктичний науковий центр МОН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Гідрометеорологічні та океанографічні дослідження Гідрометеорологічні та океанографічні дослідження |
| spellingShingle |
Гідрометеорологічні та океанографічні дослідження Гідрометеорологічні та океанографічні дослідження Chyhareva, A. Krakovska, S. Pishniak, D. Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part 1: cold temperature indices Український антарктичний журнал |
| description |
Objective. This paper deals with an estimation of the climate change at the Antarctic Peninsula region. During last decades, the most significant warming is observed in Polar regions, particularly in the Antarctic Peninsula region, where the Ukrainian Antarctic Akademik Vernadsky station is located. Therefore, the providing of the complex estimation of climate change trend is an important task for the region. These changes are taking place nowadays and will happen in the future. So, the main objective of the study is to estimate changes of climate characteristics in the Antarctic Peninsula region in the 21st century, based on calculation of the relevant climate indices. The projections of the temperature and precipitation characteristics in the Antarctic Peninsula region and Akademik Vernadsky station area for RCP4.5 and RCP8.5 scenarios are the objects of the research. |
| format |
Article |
| author |
Chyhareva, A. Krakovska, S. Pishniak, D. |
| author_facet |
Chyhareva, A. Krakovska, S. Pishniak, D. |
| author_sort |
Chyhareva, A. |
| title |
Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part 1: cold temperature indices |
| title_short |
Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part 1: cold temperature indices |
| title_full |
Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part 1: cold temperature indices |
| title_fullStr |
Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part 1: cold temperature indices |
| title_full_unstemmed |
Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part 1: cold temperature indices |
| title_sort |
climate projections over the antarctic peninsula region to the end of the 21st century. part 1: cold temperature indices |
| publisher |
Національний антарктичний науковий центр МОН України |
| publishDate |
2019 |
| topic_facet |
Гідрометеорологічні та океанографічні дослідження |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/168295 |
| citation_txt |
Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part 1: cold temperature indices / A. Chyhareva, S. Krakovska, D. Pishniak // Український антарктичний журнал. — 2019. — № 1 (18). — С. 62-74. — Бібліогр.: 19 назв. — англ. |
| series |
Український антарктичний журнал |
| work_keys_str_mv |
AT chyharevaa climateprojectionsovertheantarcticpeninsularegiontotheendofthe21stcenturypart1coldtemperatureindices AT krakovskas climateprojectionsovertheantarcticpeninsularegiontotheendofthe21stcenturypart1coldtemperatureindices AT pishniakd climateprojectionsovertheantarcticpeninsularegiontotheendofthe21stcenturypart1coldtemperatureindices AT chyharevaa klímatičníproekcíívrajoníantarktičnogopívostrovadokíncâxxistolíttâčastina1índeksiholodu AT krakovskas klímatičníproekcíívrajoníantarktičnogopívostrovadokíncâxxistolíttâčastina1índeksiholodu AT pishniakd klímatičníproekcíívrajoníantarktičnogopívostrovadokíncâxxistolíttâčastina1índeksiholodu |
| first_indexed |
2025-11-25T07:29:38Z |
| last_indexed |
2025-11-25T07:29:38Z |
| _version_ |
1849746555684257792 |
| fulltext |
62
Cite: Chyhareva A., Krakovska S., Pishniak D. Climate projections over
the Antarctic Peninsula region to the end of the 21st century. Part I:
cold temperature indices. Ukrainian Antarctic Journal, 2019. № 1(18),
62—74.
UDK 551.582.2
A. Chyhareva 1, 2, *, S. Krakovska 1, 2, D. Pishniak 2
1 Ukrainian Hydrometeorological Institute State Service of Emergencies of Ukraine
and National Academy of Sciences of Ukraine, 37 Prospekt Nauky, Kyiv, 03028, Ukraine
2 State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine,
16 Taras Shevchenko Blvd., Kyiv, 01601, Ukraine
* Corresponding author: chyhareva@ukr.net
CLIMATE PROJECTIONS OVER THE ANTARCTIC
PENINSULA REGION TO THE END OF THE 21st CENTURY.
PART I: COLD TEMPERATURE INDICES
ABSTRACT. Objective. This paper deals with an estimation of the climate change at the Antarctic Peninsula region. During last
decades, the most significant warming is observed in Polar regions, particularly in the Antarctic Peninsula region, where the
Ukrainian Antarctic Akademik Vernadsky station is located. Therefore, the providing of the complex estimation of climate
change trend is an important task for the region. These changes are taking place nowadays and will happen in the future. So, the
main objective of the study is to estimate changes of climate characteristics in the Antarctic Peninsula region in the 21st century,
based on calculation of the relevant climate indices. The projections of the temperature and precipitation characteristics in the
Antarctic Peninsula region and Akademik Vernadsky station area for RCP4.5 and RCP8.5 scenarios are the objects of the
research. Methods of the research are numerical simulation and statistical analysis of the regional climate model data for the
Antarctic Peninsula region from the International Project Polar-CORDEX. Spatial distribution of this data is 0.44° and three
periods are under consideration: historical climatic period (1986—2005) and two future periods 2041—2060 and 2081—2100.
The R-code language and the modified computing code developed by Climate4R Hub project in Jupiter Notebook environment
were used for climate data analysis in this research. Six parameters were chosen to estimate climate change in the Antarctic
Peninsula region: number of frost days with minimal air temperature (Т) less 0 °C, number of ice days with maximal Т less 0 °C,
annual total precipitation, mean precipitation rate, maximum yearly duration of periods without precipitation, maximum yearly
duration of periods with precipitation more than 1 mm per day. Results as an analysis of the cold temperature indices are
presented in the Part I of the paper, while an analysis of the wet/dry indices will be presented in the Part II of the paper.
Conclusions. Over the Antarctic Peninsula region, both scenarios project an average decrease in the cold season period. This
process will be more pronounced for the RCP 8.5 scenario, when even to the middle of the century the period with negative
temperatures is rapidly decreasing over the Larsen Ice Sheet area, which may cause its total or partial collapse. Over Akademik
Vernadsky station area, the climate indices changes will almost triple as high as the averaged values over the Antarctic Peninsula
for the two scenarios, indicating a greater vulnerability to the climate change in the area.
Keywords: Antarctic Peninsula, Akademik Vernadsky station, climate change, regional climate model, Polar-CORDEX, RCP
scenario.
Гідрометеорологічні та океанографічні дослідження
Hydro-Meteorological and Oceanographic Research
ISSN 1727-7485. Український антарктичний журнал. 2019, № 1 (18)
INTRODUCTION
The Polar Regions are important components of the
global climate system and have a significant impact
on the ocean-land-atmosphere interaction. Increasing
temperature at high latitudes causes melting glaciers,
pack ice and changes in the cryosphere boundary
conditions, which in turn affects other components
of the climate system (IPCC, 2013). In recent
decades, the most significant warming in the climate
system is observed in the Polar Regions, in particular
at the Antarctic Peninsula area, where Akademik
63ISSN 1727-7485. Український антарктичний журнал. 2019, № 1 (18)
Climate projections over the Antarctic Peninsula region to the end of the 21 st century
Vernadsky stationis located (Convey and Smith et al.
2005; Kra kovska et al., 2010; Tymofeyev, 2013; Kra-
kovska et al., 2017). According to climate model pro-
jec tions from the 5th Assessment Report of the Working
Group I of the Intergovernmental Panel on Climate
Change (IPCC, 2013), mean surface air temperatures
will also increase fastest in the high latitudes. In this
regard, it is necessary to provide a comprehensive
assessment of the climate change trend that is currently
occurring and is expected in the future. Particularly, it
is crucial for developing a strategy of future logistic
and scientific operations in the region.
In overall, the reveal of the climate change dynamics
in the Polar Regions according to different anthropogenic
emission scenarios is vital for the early adaptation of
humanity to the possible effects of climate change. The
Antarctic Peninsula region is particularly vulnerable
due to the large ice shelf existence, where considerable
destruction and melting processes have been observed
in recent decades. These rapid warming processes can
cause a significant rise of sea level as like (IPCC, 2013).
Nowadays, a numerical modeling is the most ef-
fec tive tool for study the dynamics of the past and the
fu ture climate, as it allows quantifying a possible
chan ge in climate characteristics. Unfortunately, the
use of numerical modeling in Antarctic region is limited
due to the insufficient density of the observation
network. Therefore, the estimation of model climate
cha racteristics is based on numerical methods of
interpolation and forecasting (IPCC, 2013; Covey et al.,
2003; Giorgi et al., 2015). This causes differences, in
some cases significant, between model estimation
and observational data. Among the most significant
discrepancies are the following: the temperature
biases are usually slightly higher over the oceans than
over the continents; there are also some inaccuracies
in the relief models; there is a deviation of the
precipitation model values from the reanalysis data,
especially during cyclonic weather and intense cyclone
activity (Krakovska et al., 2017; IPCC, 2013).
The calculation of physical processes within the
model must always maintain a balance between the
quality of the result and the required computational/
economic costs. A more accurate representation of
any process requires more of these costs, but at the
end, the result of the simulation may not be signi fi cantly
different from the simplified calculations. Moreover,
the errors that exist in models at all spatio-temporal
scales are related to constraints in the represented
physical processes (Covey et al., 2003; Giorgi et al.,
2015; Taylor et al., 2011). However, despite some
shortcomings, regional and global climate models
are currently the only opportunity to project the
future climate change (Krakovska et al., 2017; IPCC,
2013; Krakovska et al., 2010). First Global Circula-
tion Mo dels (GCMs) and Regional Climate Models
(RCMs) have already predicted that the mean surface
air temperature will rise the fastest in the high
latitudes. Recent observation data has confirmed
these first projections, which also allows using these
models for future periods with sufficient confidence.
Therefore, the purpose of the study is to analyze
changes in the regional climate characteristics of the
Antarctic Peninsula on the basis of calculations of a
set of indicators under the scenarios RCP4.5 and
RCP8.5. The subject of the study is current and
predicted changes in air temperature and wet/dry
indices in the Antarctic Peninsula region and at the
Akademik Vernadsky station location.
The following tasks have been considered:
1. Calculation of climate indices for three RCMs
and three scenarios (historical, RCP4.5, RCP8.5)
and for three climatic periods: the historical baseline
(1986–2005), the middle (2041–2060), and the end
of the century (2081–2100).
2. For every index-period-scenario, calculate an
en semble average, multiyear mean for the Antarctic
Peninsula region and for the Akademik Vernadsky
station area.
3. Visualization and assessment of possible change
in climate indices in the Antarctic Peninsula region
at the middle and at the end of the 21st century.
DATA AND METHODS
An ensemble of regional climate models and the
software tool Climat 4R to process the RCM outputs
are used in the study. Climate change in the Antarctic
Peninsula region has been estimated on the basis of
some climate indices recommended by the World
64 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 1 (18)
A. Chyhareva, S. Krakovska, D. Pishniak
Cli mate Research Program WCRP (Karl et al., 1999;
Peterson et al., 2001).
The results of the study will be presented in two
parts: Part I presents the results on the cold tempera-
ture indices, while some wet/dry indices will be pre-
sented in the Part II of this research.
The ensemble of regional climate models
Climate indices were calculated based on the model da-
ta from the Polar-CORDEX project (Coordinated Re-
gional Climate Downscaling Experiment for the Polar
Regions), which is a part of the International CORDEX
initiative (Giorgi et al., 2015; Koenigk et al., 2015).
Bo undary and initial conditions for CORDEX were
derived from the CMIP5 GCMs (Taylor et al., 2011).
Three scenarios for Polar-CORDEX are considered:
1. Historical. Retrospective of 1950–2005 (Granier
et al., 2011);
2. RCP 4.5 for the period 2006–2100 (Thomson et
al., 2011);
3. RCP 8.5 for the period 2006–2100 (Riahi et al.,
2011).
The study uses outputs from three regional Polar-
CORDEX models, i.e. the ensemble included two
ver sions of the regional model RACMO21P and the
regional model HIRHAM5. These RCMs were cho-
sen as only available for Antarctica region at the date.
The regional climate model spatial resolution was 0.44°,
as agreed for all CORDEX domains (Giorgi et al.,
2015; Koenigk et al., 2015). For the first version of
RACMO21P (van Meijgaard et al., 2008) and for the
HIRHAM5, the EC-EARTH global climate model
calculation data (http://www.ec-earth.org) were used
as initial and boundary conditions. In the second ver-
sion of RACMO21P the GCM HadGEM2 was used
(Collins et al., 2008). The RCM RACMO21P is de-
veloped by the Royal Meteorological Institute of the
Netherlands (KNMI) and the Utrecht Institute for
Marine and Atmospheric Research. The developer of
the HIRHAM5 is the Danish Meteorological Insti-
tute (DMI) (Christensen et al., 2007).
The project climate4R
The use of the climate data set usually requires the
processing: multiple access to databases, interpolation
to the common grid, harmonization in space and time,
and post-processing with the visualization of the
results. It is a time-consuming task that in ma ny cases
is performed with various tools, which is inevitably
accompanied by a large number of an errors in the
absence of the necessary tools for a reproduction and
visualization. Climate4R is a package of soft ware
developed on the basis of the R-programming language
for climate research, where the most general tasks can
be accomplished using the libraries, which are ready for
this purpose. A detailed description of the climate4R is
provided in Iturbide et al. (2019). Climate4R enables
access, post-processing and visualization of local and
remote (OPeNDAP) data so ur ces, providing complete
information on data origin u sing METACLIP (Semantic
METAdata for CLIma te Products) (Bedia et al., 2019).
Climate indices
Temperature and precipitation are the main characteristics
of regional climate and usually mainly discussed in
climate change research (IPCC, 2013). He re we want
to find and emphasize some peculiarities of projected
Antarctic Peninsula regional climate change. Therefore,
we decided to use defined climate indices but not
mean temperature and precipitation change. To evaluate
the climate dynamics of different regions of the world,
WCRP/CLIVAR recommended 27 indices that provide
a comprehensive description of climatic conditions
and allow the comparison of different regions by a
unified method (Karl et al., 1999; Peterson et al., 2001).
Some of the recommended indices are more suitable
for the Polar Regions.Therefore, six climate indices
were selected for this study, which best characterize
the temperature and precipitation change in the Polar
Regions, particularly for air temperature near the
water freezing point.
Cold indices:
1. FD (Frost days). Number of days per year when
TN (daily minimum temperature) <0 °C.
2. ID (Ice days). Number of days per year when TX
(daily maximum temperature) <0 °C.
Precipitation (wet/dry) indices:
3. PRCPTOT (Precipitation total). Total precipitation
in the wet days: RR
ij
is the daily rainfall per day i during
65ISSN 1727-7485. Український антарктичний журнал. 2019, № 1 (18)
Climate projections over the Antarctic Peninsula region to the end of the 21 st century
period j (every particular year). If I is the number of
days i for the period j, then
.
4. CWD (Consecutive wet days). Maximum duration
of precipitation period, maximum number of consecutive
days with RR ≥ 1 mm. If RR
ij
is the daily rainfall per
day i in period j, the highest number of consecutive
days is calculated where RR
ij
≥ 1mm.
5. SDII (Simple daily intensity index). Simple
rainfall intensity index. Let RR
wj
be the daily rainfall
on wet days w (RR ≥ 1mm) in period j. If W is the
number of days with precipitation in j, then:
.
6. CDD (Consecutive dry days). Maximum duration
of the dry season per year, maximum number of days
in a row with RR < 1mm. If RR
ij
is the daily rainfall
per day i in period j, the highest number of days in a
row is calculated where RR
ij
< 1mm.
Methodology of climate
indices change analysis
Projections of the annual index values were used to
identify trends in the climate characteristics. For each
index based on the RCM ensemble some characteris-
tics were calculated in grid nodes (multiyear mean and
change relative to the base period), while others were
aggregated over the entire Peninsula region or extrac-
ted for Akademik Vernadsky station. Thus, the change
at the grid node was calculated as the difference:
Δ
i
= X
i
– Y
–
historical
,
where X
i
– is the RCM ensemble mean annual index
value, i – is a year, i ∈ [2041–2060,2081–2100],
Y
–
historical
– the multiyear average index value for the
base period [1986–2005].
The calculation of the characteristics for Akademik
Vernadsky station area was performed by interpolation
of the climate4R set data to the location 65.25°S,
64.26°W.
RESULTS
This section presents the results of two climate indices
calculations (ice and frost days) obtained with the
climate4R software package (Iturbide et al., 2019).
The multiyear mean and changes were calculated in
future projections relatively the base period and
averaged spatially and in time as pointed above.
Frost days, FD
FD multiyear mean
The average number of frost days from the RCM
ensemble varies within the 355 ± 1 day in the baseline
period. Under the scenario RCP4.5 the FD value
decreases to 353 ± 1 days until the middle, and 352 ±
± 1 days until the end of the century. Under the RCP8.5
scenario, the FD value is significantly reduced in
comparison to the RCP4.5 scenario. To the mid-century,
FD will decrease in average to 352 ± 2 days, and by
the end of the century to 346 ± 4 days in average. This
means that in accordance with the model projections
to the end of the century, the number of days with
frost will decrease by three days under the scenario
RCP4.5 in average, and by 9 days under the scenario
RCP8.5. The obtained results are presented in Fig. 1,
where the index changes according to the RCP4.5
scenario are shown on the left, and according to the
RCP8.5 scenario on the right. The solid shaded area
in Fig. 1 represents the range and the so lid line
represents the mean values for the RCM ensemble.
FD changes over the Antarctic Peninsula
and Akademik Vernadsky station
The changes in the number of frost days for the
RCP4.5 and RCP8.5 scenarios to the middle and to
the end of the 21st century are presented in Fig. 2.
Much lower variability of the characteristics over the
entire Peninsula in comparison to the index trend for
Akademik Vernadsky station is seen clearly.
Under the RCP4.5 scenario, the multiyear mean
of the average index for the Peninsula is uniform with
little interannual variability over several days. The
multiyear mean change averaged by century is close
to –2 days. To the end of the century it reaches –6 ±
± 1 day. For Akademik Vernadsky station, the decrease
PRCPTOT
j
= RR
ij
.Σ
i = 1
I
SDII
j
=
W
ΣW
w = 1
RR
wj
66 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 1 (18)
A. Chyhareva, S. Krakovska, D. Pishniak
is much larger than for the Peninsula. It is in average–
30 ± 10 days and varies within –6 ÷ –44 days in the
middle of the century. The range of values of individual
models is +10 ÷ –70 days in individual years. But all
three models show a significant decrease to 2050,
when FD season may shrink by more than a month.
At the end of the century, the FD changes are from
–55 to –25 days for the station, when there is a
relatively small decrease to –40 days by 2100.
According to the RCP8.5 scenario, FD decrease is
observed for the entire Peninsula, which varies within
–1 ÷ –5 days in the middle of the century. The
decrease reaches to –11 days for the Antarctic
Peninsula area by the end of the century.
For the Akademik Vernadsky station under the
scenario of RCP8.5 for the middle of the century a
significant reduction in FD is projected. During this
period, deviations are observed in the range –25 ÷
–45 days with amplitude of ± 20 days approximately
every five years. By 2060, the FD season will be
reduced by almost 50 days. By the end of the century,
the decrease is projected to continue, and under this
scenario it will be equal to about –100 days at the end
of the 21st century. More detailed information on
fluctuations in the multiyear mean FD change trend
is presented in Fig. 2.
Spatial distribution
of the average FD change
The average FD value in the historical scenario is 355
days on the vast majority of the Antarctic Peninsula
area (Fig. 3, c). In the northeastern (Larsen glacier)
and southwestern (Alexander I Island, George VI
glacier) parts of the Peninsula it decreases to 330
days. In general, the least frost days (up to 315) were
found at the northern tip of the Peninsula and in its
eastern slope, dominated by shelf glaciers with small
elevations.
The results on FD show that the ensemble and the
20-year mean changes are almost the same in the vast
majority of the Peninsula by RCP4.5 scenario over
the century and in average is – 4 days. A slight positive
change is projected in the southern part of the
Fig. 1. Number of frost days (FD) for Historical, RCP4.5 and RCP8.5 scenarios for the 21st century
67ISSN 1727-7485. Український антарктичний журнал. 2019, № 1 (18)
Climate projections over the Antarctic Peninsula region to the end of the 21 st century
Fig. 2. Time series of FD change for Antarctic Peninsula (pink) and the Akademik Vernadsky station (black)
68 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 1 (18)
A. Chyhareva, S. Krakovska, D. Pishniak
Fig. 3. Spatial distribution of FD for his-
torical scenario (c) and mean change of
FD for pointed climatic periods for sce-
narios RCP4.5 (a, b) and RCP8.5 (d, e)
2041—2060 period
2041—2060 period
2081—2100 period
2081—2100 period
1986—2005 period
10
0
–10
–20
–30
–40
–50
10
0
–10
–20
–30
–40
–50
10
0
–10
–20
–30
–40
–50
10
0
–10
–20
–30
–40
–50
360
350
340
330
320
310
a
d
b
e
c
Fig. 4. Number of ice days (ID) for His to rical, RCP4.5 and RCP8.5 scenarios in the 21st century
69ISSN 1727-7485. Український антарктичний журнал. 2019, № 1 (18)
Climate projections over the Antarctic Peninsula region to the end of the 21 st century
Fig. 5. Time series of the ID change over Antarctic Peninsula (pink) and over the Akademik Vernadsky station (black)
70 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 1 (18)
A. Chyhareva, S. Krakovska, D. Pishniak
Peninsula in the region around Mount Coman (3655 m).
This anomaly almost disappears at the end of the
century. A significant negative change and its growth
at the end of the century is expected on the western
coast of the Peninsula and in coastal zones, in
particular in the Akademik Vernadsky sta tion region,
where FD will decrease by 30 days in the middle and
by 35 days before the end of the century (Fig. 3, a, b).
According the RCP8.5 scenario, the calculated
index changes are significantly different from RCP4.5
scenario (Fig. 3, d, e). In average, the FD will decrease
by 10 days in the middle of the century in the Peninsula
region. At the end of the century, the values decrease
revealed some heterogeneity within the Peninsula: in
the northeastern and southern parts of the region,
FD decreases by 10—20 days, but in some coastal
areas – over –40 days. As for Akademik Vernadsky
station, the number of frost days may decrease by an
average of 35 days to the middle and by 80 days to the
end of the century.
Ice days (ID)
ID Multiyear mean
In the historical period, the average ID value is 339 ±
3 days, with an annual variability from 334 to 345
days. The insignificant reducing ID trend is observed
along all base period (Fig. 4).
The tendency of ID changes during the 21st century
is similar to the FD change trend. Thus, under the
scenario RCP4.5 in the middle of the century, the
decrease in the number of ID compared to the baseline
period up to 330 ± 4 days is observed. Over the last twenty
years, the ensemble averaged ID value is 327 ± 3 days.
In general, the slight trend towards ID decreasing is
observed by the RCP4.5 scenario (Fig. 4).
The ID number rapid decrease is expected under the
RCP8.5 scenario. In 2041–2060 period, the ID value
will be reduced in average from 330 to 324 days. Over the
last twenty years at the 21st century, the ID has decreased
in average from 315 to almost 300 days (Fig. 4).
Fig. 6. Spatial distribution of the ID
values for historical scenario (c) and
mean ID change for the climate periods
according to the RCP4.5 (a, b) and
RCP8.5 (d, e) scenarios
2041—2060 period
2041—2060 period
2081—2100 period
2081—2100 period
1986—2005 period
10
0
–10
–20
–30
–40
–50
–60
0
–20
–40
–60
–80
–100
0
–20
–40
–60
–80
–100
10
0
–10
–20
–30
–40
–50
–60
360
340
320
300
280
260
240
220
200
a
d
b
e
c
71ISSN 1727-7485. Український антарктичний журнал. 2019, № 1 (18)
Climate projections over the Antarctic Peninsula region to the end of the 21 st century
ID changes over the Antarctic Peninsula region
and Akademik Vernadsky station area
The ID multiyear mean change is more pronounced
in the both scenarios for the Antarctic Peninsula
region than for the FD. The extremes of the averaged
ID change fluctuations are observed over the Peninsula
and over Akademik Vernadsky station, although the
values at the station are much higher than the average
at the Peninsula for both scenarios (Fig. 5).
Under the RCP4.5 scenario, the change over the
Peninsula is equal in average to –9 days in the
middle and –14 days at the end of the century for
the 20 year averages. The variability of the multiyear
mean changes ranged from –5 to –15 days in the
middle of the century and from –10 to –17 days at
the end of the century. The significant ID decrease
is observed over the Akademik Vernadsky station
area in the 2041—2060 pe riod.This decrease ranges
from in average of –20 days at the beginning to –50
days at the end of the specified period. At the end of
the century, both the multiyear mean ID change
amplitude oscillation and its average value are falling
up to–26 ÷ –60 days with the mean of –35 days
decrease (Fig. 5).
According to the RCP8.5 scenario, the significant
ID decrease is projected over both the Antarctic
Peninsula and Akademik Vernadsky station. In the
middle of the century, the multiyear mean ID change
will decrease from –10 to –17 days with slight inter
annual variability of 3–4 days over the Antarctic
Peninsula. At the end of the century, this value will
reach down to –35 days. According to the RCP8.5
scenario, the rate of the ID reduction is approximately
equal to two days per year and exceeds significantly
those calculated according the RCP4.5 scenario.
Over the Akademik Vernadsky station, the IDnumber
decrease is not linear. There are significant interannual
oscillations with amplitudes up to 20 days and a
higher frequency in the middle of the century, which
become somewhat smoothed at the end of the century.
In general, we can reveal a tendency for a significant
decrease in the number of ID, when average values
will be –45 days less at the middle and –115 days less
at the end of the century (Fig. 5).
Spatial distribution of the average FD change
Over the historical period, the average ID values spatial
distribution is shown in Fig. 6. This distribution is the
mean of the RCM ensemble over the Peninsula area.
The number of ID was approximately 340 days in the
historical period over the central part of the Peninsula.
In the northern (Larsen glacier, Graham Land) and
southwestern (Alexander I Island, George VI glacier)
parts of the Peninsula the number of ID is smaller with
values of 260 days in average, indicating warmer
(marine) climate than in the mountainous part of the
Peninsula.
For the future, trends in the ID number decrease
are much greater than the FD reduction. According
to the RCP4.5 scenario, a significant negative change
is expected for almost the entire Peninsula region in
the middle of the century (Fig. 6, a), when it is only
within 10 days in the central mountainous part of the
Peninsula. Over the Larsen glacier, Alexander I Island
and the southern coastal areas, this negative change
is equal to –30 and –40 days in some grid nodes. At
the end of the century, in these areas, the decreasing
tendency will intensify (Fig. 6, b).
According to the RCP8.5 scenario, a significant
ID decrease is expected with approximately 100 days
less in some areas at the end of the century (Fig. 6, e).
Over the mountainous area, the minimum ID changes
about –10 days are observed in the middle of the
century (Fig. 6, d), which will decrease at the end of
the century (Fig. 6, e). Over the Larsen Glacier,
Graham Land and the region around Alexander I
Island, the mid-century average change will be of
–30 days, reaching to –70 days at the end of the
century.
Note, that in the considered projections, a slight
increase in the number of ice days was found in the
Mount Coman area according to the RCP4.5 scenario,
and in the middle of the century according to the
RCP8.5 scenario.
DISCUSSION AND CONCLUSION
In the Part I of the paper, the analysis of the two
climatic indices is presented based on the projections
of an ensemble of three RCMs calculated for two
72 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 1 (18)
A. Chyhareva, S. Krakovska, D. Pishniak
scenarios (RCP4.5 and RCP8.5) in the middle and at
the end of the 21st century. These indices (ice and
frost days) characterize the temperature regime around
the water freezing point near the surface in the atmos-
phere and particularly relevant for the sustainability
of cryosphere.
Over the Antarctic Peninsula region, an average
decrease in the cold season period is projected by
both scenarios. This process will be more pronounced
for the RCP8.5 scenario.
According to the RCP4.5 scenario, both the FD
and the ID indices have a slight change in values at
the end of the century compared to the middle of the
century, whereas according to the RCP8.5 scenario,
the deviation for these parameters is almost twice as
high at the end as in the middle of the century.
Aggregated over the Antarctic Peninsula RCM
results reveal the decline of the number of ID days in
average on 13 days according to the RCP4.5 scenario
and on 37 days according to the RCP8.5 scenario at
the end of the century.
The number of ice days (ID) tends to the faster de-
crease than the number of frost days (FD). This may
indicate that the cold period of the year will be re-
duced in the study region, which is in line with the
findings of IPCC and many other current studies.
Both scenarios have projected the ID decrease over
the entire Antarctic Peninsula, which indicates an
increase of positive temperatures in the region. In
particular, according to the RCP8.5 scenario, the pe-
riod with negative temperatures is rapidly decreasing
over the Larsen Ice Sheet area in the middle of the
century, which may cause its total or partial collapse.
Over the Akademik Vernadsky station area, the
climate indices changes are projected almost triple as
high as the averaged values for the Antarctic Peninsula
for both scenarios, indicating a greater vulnerability
to the climate change in the area.
According to the results of the study, number of
days with positive temperature will increase over the
eastern part of the Antarctic Peninsula (Larsen Glacier,
eastern slope of the mountains) and the islands of the
Bellingshausen Sea (Brabant, Anvers, Renaud, Adelaide),
and comparatively less changes have been found over
Graham Land and Palmer Land. The significant
changes in temperature regime towards extension of
warm period are predicted according to both scenarios
at the end of the century over the Akademik Vernadsky
station area. Therefore, the tendency of the temperature
change regime is revealed dependent on altitude
above sea level with decrease of the warming tendency
with altitude. A joint analysis of climate change
modeling and the ice thickness information in each
region will allow studying possible changes in the
cryosphere and determining the area, which is more
susceptible to warming. It is clear that the different
contribution to the distribution of regional signs of
climate change will be driven by changes in the
atmosphere and ocean circulation in the region, but
this issue needs further investigation.
Full summary of the results on the projected changes
in cold temperature and wet/dry indices, together with
the discussion of further possible directions of the
study will be presented in the Part II of the article.
Acknowledgements. Authors thank Santander
Me teorology Group and Maialen Iturbide for assistance
with climate4R framework and data processing that
greatly helped working on this paper.
REFERENCES
1. Bedia, J., San-Martín, D., Iturbide, M., Herrera, S.,
Manzanas, R., Gutiérrez, J.M. 2019.The METACLIP
semantic provenance framework for climate products.
Environmental Modelling & Software. https://doi.org/10.
1016/j.envsoft.2019.07.005.
2. Bøssing Christensen, O., Drews, M., Hesselbjerg Christen-
sen, J., Dethloff, K., Ketelsen, K., Hebestadt, I., Rinke,
A. 2007. The HIRHAM Regional Climate Model. Version 5
(beta). Danish Climate Centre, Danish Meteorological
Institute. Denmark. Danish Meteorological Institute.
Tech nical Report, 06—17.
3. Collins, W.J., Bellouin, N., Doutriaux-Boucher, M.,
Gedney, N., Hinton, T., Jones, C. D., Liddicoat, S.,
Martin, G., O’Connor, F., Rae, J. , Senior, C., Totterdell,
I., Woodward, S., Reichler, T., Kim, J. 2008. Evaluation
of the HadGEM2 model. Met Office Hadley Centre
Technical Note, HCTN 74.
4. Convey, P., Smith, R.I.L. 2005. Responses of terrestrial
Antarctic ecosystems to climate change. In: Rozema J.,
Aerts R., Cornelissen H. (eds). Plants and Climate Change.
Tasks for vegetation science. 41. Springer, Dordrecht.
https://doi.org/10.1007/978-1-4020-4443-4_1.
73ISSN 1727-7485. Український антарктичний журнал. 2019, № 1 (18)
Climate projections over the Antarctic Peninsula region to the end of the 21 st century
5. Covey, C., Achuta Rao, K. M., Cubasch, U., Jones, P.,
Lambert, S.J., Mann, M. E., Phillips, T. J., Taylor, K. E.
2003. An overview of results from the Coupled Model
Intercomparison Project. Global and Climate change, 37,
103–133. https://doi.org/10.1016/S0921-8181(02)00193-5.
6. Giorgi, F., Gutowski, W.J. 2015. “Regional dynamical
downscaling and the CORDEX initiative”. Annual Review
of Environment and Resources, 40, 1. 467–490.
7. Granier, C., Bessagnet, B., Bond, T., D’Angiola, A., van
der Gon, H.D., Frost, G., Heil, A., Kainuma, M., Kaiser,
J., Kinne, S., Klimont, Z., Kloster, S., Lamarque, J-F.,
Liousse, C., Matsui, T., Meleux, F., Mieville, A., Ohara,
T., Raihi, K., Schultz, M., Smith, S.J., Thomson, A.M.,
van Aardenne, J., van der Werf, G. 2011. Evolution of
anthropogenic and biomass burning emissions of air
pollutants at global and regional scales during the 1980–
2010 period. Climatic Change, 109: 163—190. https://doi.
org/10.1007/s10584-011-0154-1.
8. IPCC, 2013: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth As-
sessment Report of the Intergovernmental Panel on Cli-
mate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M.
Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex
and P.M. Midgley (eds.)]. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA,
1535.
9. Iturbide, M., Bedia, J., Herrera, S., Baño-Medina, J.,
Fernández, J., Frías, M.D., Manzanas, R., San-Martín,
D., Cimadevilla, E., Cofiño, A.S., Gutiérrez, J.M. 2019.
The R-based climate4R open framework for reproducible
climate data access and post-processing. Environmental
Modelling and Software, 111. 42—54.
10. Karl T.R., N. Nicholls, and A. Ghazi. 1999. CLIVAR/GCOS/
WMO workshop on indices and indicators for climate ex-
tremes: Workshop summary. Climatic Change, 42.3-7.
11. Koenigk, T., Berg, P., Doescher, R. 2015. Arctic climate
chan ge in an ensemble of regional CORDEX simulati-
ons. Po lar Res., 34, 24603. https//doi.org/10.3402/polar.
v34. 24603
12. Krakovska S.V., Djukel G.A. 2010. The observed Antarctic
Peninsula warming during the 20th century in the AOGCMs
and the 21st century projections for the region — Oslo :
International Polar Year Conference, 8—12 June, 2010.
13. Krakovska S.V., Pysarenko, L.A. 2017. Changes of the
surface air temperature in the 20th—21st centuries in the
Antarctic peninsula region based on climate models’
data. Ukrainian Antarctic Journal, 16, 52—65.
14. Peterson T.C., and Coauthors. 2001. Report on the Activities
of the Working Group on Climate Change Detection and
Related Rapporteurs. Geneve, Switzerland : WMO, Rep.
WCDMP-47, WMO-TD 1071, 1998—2001. 143.
15. Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer,
G., Kindermann, G., Nakicenovic, N., Rafa, P. 2011.
RCP 8.5—A scenario of comparatively high greenhouse
gas emissions. Climatic Change, 109, 33–57. https://doi.
org/10.1007/s10584-011-0149-y.
16. Taylor, K. E., Stouffer, R. J., Meehl, G. A., 2011. “An
overview of CMIP5 and the experiment design”. Bull.
Amer. Meteor. Soc., 93. 485–498.
17. Thomson, A., Calvin, K., Smith, S., Kyle, P., Volke, A.,
Patel, P., Delgado-Arias, S., Bond-Lamberty, B.,Wise,
M., Clarke, L., Edmonds, J. 2011. RCP4.5: a pathway
for stabilization of radiative forcing by 2100. Climatic
Change, 109: 77—94. https://doi.org/10.1007/s10584-
011-0151-4.
18. Tymofeyev, V.E. 2013. Multi-years’ changes in the air tem-
perature at the Antarctic Peninsula and the possible rea-
sons. Proceedings of the Ukrainian Research Hyd ro me-
teo rological Institute. 264, 9—17.
19. van Meijgaard, E., van Ulft, L.H., van de Berg, W.J., Bosveld,
F.C., van den Hurk, B.J.J.M., Lenderink, G., Siebesma, A.P.
2008. The KNMI regional atmospheric climate model RACMO
version 2.1. Royal Netherlands Meteorological Institute
(KNMI). Technical report 302.
А. Ю. Чигарева 1, 2, *, С. В.Краковська 1, 2, Д. В. Пішняк 2
1 Український гідрометеорологічний інститут, Державна служба надзвичайних ситуацій України
та Національна академія наук України, пр. Науки, 37, м. Київ, 0302, Україна
2 Державна установа Національний антарктичний науковий центр МОН України,
бульв. Тараса Шевченка, 16, м. Київ, 01016, Україна
* Автор для кореспонденції: chyhareva@ukr.net
КЛІМАТИЧНІ ПРОЕКЦІЇ В РАЙОНІ АНТАРКТИЧНОГО ПІВОСТРОВА
ДО КІНЦЯ XXI СТОЛІТТЯ. ЧАСТИНА I: ІНДЕКСИ ХОЛОДУ
РЕФЕРАТ. Актуальність. Стаття присвячена оцінці змін, що відбуваються в районі Антарктичного півострова. Впро-
довж останніх десятиліть найсуттєвіше потепління в кліматичній системі спостерігається в полярних регіонах, зо-
крема в районі Антарктичного півострова, де розташована Українська антарктична станція «Академік Вернадський».
У зв’язку з цим необхідно забезпечити кращу комплексну оцінку тенденцій кліматичних змін, які вже зафіксовані та
74 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 1 (18)
A. Chyhareva, S. Krakovska, D. Pishniak
прогнозуються в майбутньому. Відповідно, мета дослідження — оцінити зміни кліматичних характеристик в регіоні
Антарктичного півострова в ХХІ столітті, на основі обчислення відповідних кліматичних показників. Об’єкт дослі-
дження: проекції характеристик температури повітря та режиму зволоження в районі Антарктичного півострову та
Української антарктичної станції «Академік Вернадський» за сценаріями RCP4.5 та RCP8.5 (Representative
Concentration Pathway, RCP, Траєкторії репрезентативних концентрацій). Методами дослідження є чисельне моделю-
вання та статистичний аналіз даних регіональних кліматичних моделей для регіону Антарктичного півострова від
міжнародного проекту Polar-CORDEX (Coordinated Regional Downscaling Experiment for the Polar Regions, Скоордино-
ваний експеримент з масштабування регіонального клімату для полярних регіонів). Просторовий розподіл цих даних
становить 0,44° за історичний період (1986—2005) та два періоди майбутнього 2041—2060 та 2081—2100. У досліджен-
ні було застосовано програмування мовою R для обробки кліматичних рядів даних та модифіковано розроблений
проектом Climate4R Hub («Клімат для R») код в JupiterNotebook (Юпітер ноутбук). Для оцінки кліматичних змін, що
відбуваються в районі Антарктичного півострова, були обрані наступні параметри: кількість днів з мінімальною тем-
пературою повітря (Т) менше 0 °С, кількість днів з максимальною Т менше 0 °С, загальна річна кількість опадів, се-
редня інтенсивність опадів, максимальна річна тривалість періоду без опадів, максимальна річна тривалість періоду з
опадами більше 1 мм на добу. В першій частині статті представлені результати аналізу температурних індексів. Резуль-
тати аналізу режиму зволоження будуть представлені в другій частині статті. Висновки. Для регіону Антарктичного
півострова обидва сценарії в середньому передбачають зменшення холодного періоду. Цей процес буде більш вира-
женим для сценарію RCP 8.5, для якого навіть до середини століття період з температурою менше 0 °С швидко змен-
шуватиметься в межах Льодовика Ларсена, що може спричинити його повне або часткове руйнування. В районі ан-
тарктичної станції «Академік Вернадський» зміни кліматичних індексів майже втричі вищі, ніж середні значення для
Антарктичного півострова за обома сценаріями, що свідчить про більшу вразливість цього району до зміни клімату.
Ключові слова: Антарктичний півострів, Українська антарктична станція «Академік Вернадський», зміна клімату, ре-
гіональна кліматична модель, Polar-CORDEX, сценарій RCP.
|