On quasiconformal maps and semi-linear equations in the plane
Assume that Ω is a domain in the complex plane C and A(z) is symmetric 2× 2 matrix function with measurable entries, det A = 1 and such that 1/K|ξ|²≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|², ξ ∊ R², 1 ≤ K < ∞. In particular, for semi-linear elliptic equations of the form div (A(z)∇u(z)) = f(u(z)) in Ω we prove Factor...
Saved in:
| Published in: | Український математичний вісник |
|---|---|
| Date: | 2017 |
| Main Authors: | , , |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут прикладної математики і механіки НАН України
2017
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/169320 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On quasiconformal maps and semi-linear equations in the plane / V.Y. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2017. — Т. 14, № 2. — С. 161-191. — Бібліогр.: 39 назв. — англ. |