On quasiconformal maps and semi-linear equations in the plane

Assume that Ω is a domain in the complex plane C and A(z) is symmetric 2× 2 matrix function with measurable entries, det A = 1 and such that 1/K|ξ|²≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|², ξ ∊ R², 1 ≤ K < ∞. In particular, for semi-linear elliptic equations of the form div (A(z)∇u(z)) = f(u(z)) in Ω we prove Factor...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний вісник
Date:2017
Main Authors: Gutlyanskii, V.Y., Nesmelova, O.V., Ryazanov, V.I.
Format: Article
Language:Russian
Published: Інститут прикладної математики і механіки НАН України 2017
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/169320
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On quasiconformal maps and semi-linear equations in the plane / V.Y. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2017. — Т. 14, № 2. — С. 161-191. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine