On quasiconformal maps and semi-linear equations in the plane
Assume that Ω is a domain in the complex plane C and A(z) is symmetric 2× 2 matrix function with measurable entries, det A = 1 and such that 1/K|ξ|²≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|², ξ ∊ R², 1 ≤ K < ∞. In particular, for semi-linear elliptic equations of the form div (A(z)∇u(z)) = f(u(z)) in Ω we prove Factor...
Збережено в:
| Опубліковано в: : | Український математичний вісник |
|---|---|
| Дата: | 2017 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/169320 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On quasiconformal maps and semi-linear equations in the plane / V.Y. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2017. — Т. 14, № 2. — С. 161-191. — Бібліогр.: 39 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Assume that Ω is a domain in the complex plane C and A(z) is symmetric 2× 2 matrix function with measurable entries, det A = 1 and such that 1/K|ξ|²≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|², ξ ∊ R², 1 ≤ K < ∞. In particular, for semi-linear elliptic equations of the form div (A(z)∇u(z)) = f(u(z)) in Ω we prove Factorization Theorem that says that every weak solution u to the above equation can be expressed as the composition u = T ◦ ω, where ω : Ω → G stands for a K−quasiconformal homeomorphism generated by the matrix function A(z) and T(w) is a weak solution of the semi-linear equation △T(w) = J(w)f(T(w)) in G. Here the weight J(w) is the Jacobian of the inverse mapping ω⁻¹. Similar results hold for the corresponding nonlinear parabolic and hyperbolic equations. Some applications of these results in anisotropic media are given.
|
|---|---|
| ISSN: | 1810-3200 |