Abstracts

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний вісник
Datum:2019
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/169436
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Abstracts // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 148-150. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169436
record_format dspace
spelling 2020-06-13T08:40:32Z
2020-06-13T08:40:32Z
2019
Abstracts // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 148-150. — англ.
1810-3200
https://nasplib.isofts.kiev.ua/handle/123456789/169436
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
Abstracts
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Abstracts
spellingShingle Abstracts
title_short Abstracts
title_full Abstracts
title_fullStr Abstracts
title_full_unstemmed Abstracts
title_sort abstracts
publishDate 2019
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/169436
citation_txt Abstracts // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 148-150. — англ.
first_indexed 2025-11-24T11:20:52Z
last_indexed 2025-11-24T11:20:52Z
_version_ 1850459566093893632
fulltext Український математичний вiсник Том 16 (2019), № 1, 148 – 150 Abstracts 2010 MSC. 30L10 E. S. Afanas’eva, V. V. Bilet. Some properties of quasisymmetries in metric spaces // Ukrainian Mathematical Bulletin, 16 (2019), No. 1, 1–17. Let (X, d, µ) and (Y, d′, µ′) be metric spaces α-regular by Ahlfors with α > 0 and locally finite Borel measures µ and µ′, respectively. We consider the class ACSE of absolutely continuous functions on a.a. compact subsets E ⊂ X and establish the membership of mappings f : X → Y to a given class. References. 19 2000 MSC. 30C65, 57Q60, 20F55, 32T99, 30F40, 32H30, 57M30 B. N. Apanasov. Hyperbolic topology and bounded locally homeomorphic quasiregular mappings in 3-space // Ukrainian Mathematical Bulletin, 16 (2019), No. 1, 10–27. We use our new type of bounded locally homeomorphic quasiregular mappi- ngs in the unit 3-ball to address long standing problems for such mappings, including the Vuorinen injectivity problem. The construction of such mappings comes from our construction of non-trivial compact 4-dimensional cobordisms M with symmetric boundary components and whose interiors have complete 4- dimensional real hyperbolic structures. Such bounded locally homeomorphic quasiregular mappings are defined in the unit 3-ball B3 ⊂ R3 as mappi- ngs equivariant with the standard conformal action of uniform hyperbolic lattices Γ ⊂ IsomH3 in the unit 3-ball and with its discrete representation G = ρ(Γ) ⊂ IsomH4. Here, G is the fundamental group of our non-trivial hyperbolic 4-cobordismM = (H4∪Ω(G))/G, and the kernel of the homomorphi- sm ρ :Γ → G is a free group F3 on three generators. References. 26 2010 MSC. 35B40, 35B45, 35J62, 35K59 K. O. Buryachenko. Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials // Ukrainian Mathematical Bulletin, 16 (2019), No. 1, 28–45. ISSN 1810 – 3200. c© Iнститут прикладної математики i механiки НАН України Abstracts 149 For parabolic equations with nonstandard growth conditions, we prove local boundedness of weak solutions in terms of nonlinear parabolic potentials of the right-hand side of the equation. References. 23 2010 MSC. 30C75 I. Denega. Estimates of the inner radii of non-overlapping do- mains // Ukrainian Mathematical Bulletin, 16 (2019), No. 1, 46–56. The paper is devoted to extremal problems of the geometric function theory of complex variable related with estimates of functionals defined on systems of non-overlapping domains. Till now, many such problems have not been solved, though some partial solutions are available. In the paper improved method is proposed for solving problems on extremal decomposition of the complex plane. The main results of the paper generalize and strengthening some known results in the theory of non-overlapping domains with free poles to the case of an arbitrary arrangement of systems of points on the complex plane. References. 13 2010 MSC. 54E35 O. Dovgoshey, V. Bilet. Uniqueness of spaces pretangent to metric spaces at infinity // Ukrainian Mathematical Bulletin, 16 (2019), No. 1, 57–87. We find the necessary and sufficient conditions under which an unbounded metric space X has, at infinity, a unique pretangent space ΩX ∞,r̃ for every scaling sequence r̃. In particular, it is proved that ΩX ∞,r̃ is unique and isometric to the closure of X for every logarithmic spiral X and every r̃. It is also shown that the uniqueness of pretangent spaces to subsets of a real line is closely related to the “asymptotic asymmetry” of these subsets. References. 12 2010 MSC. 42A10, 42B99 M. V. Hembars’kyi, S. B. Hembars’ka. Approximate characteristics of the classes BΩ p,θ of periodic functions of one variable and many ones // Ukrainian Mathematical Bulletin, 16 (2019), No. 1, 88–104. We obtained the exact-by-order estimates of some approximate characteri- stics of classes of the Nikol’skii–Besov type of periodic functions of one variable and many ones in the space B∞,1 such that the norm in it is not weaker than the L∞-norm. References. 20 150 Abstracts 2010 MSC. Primary 30C62, 31A05, 31A20, 31A25, 31B25, 35J61 Secondary 30E25, 31C05, 34M50, 35Q15 V. Gutlyanskĭı, O. Nesmelova, V. Ryazanov. To the theory of semi-linear equations in the plane // Ukrainian Mathematical Bulletin, 16 (2019), No. 1, 105–140. In two dimensions, we present a new approach to the study of the semi- linear equations of the form div[A(z)∇u] = f(u), the diffusion term of which is the divergence uniform elliptic operator with measurable matrix functions A(z), whereas its reaction term f(u) is a continuous non-linear function. Assuming that f(t)/t→ 0 as t→ ∞, we establish a theorem on existence of weak C(D)∩ W 1,2 loc (D) solutions of the Dirichlet problem with arbitrary continuous boundary data in any bounded domains D without degenerate boundary components. As consequences, we give applications to some concrete model semi-linear equations of mathematical physics, arising from modelling processes in anisotropic and inhomogeneous media. With a view to further development of the theory of boundary value problems for the semi-linear equations, we prove a theorem on the solvability of the Dirichlet problem for the Poisson equation in Jordan domains with arbitrary boundary data that are measurable with respect to the logarithmic capacity. References. 74 V. A. Zorich. To the theory of quasiconformal mappings // Ukrainian Mathematical Bulletin, 16 (2019), No. 1, 141–147. The open questions of the theory of quasiconformal mappings that are adjacent to the field of studies of Professor Bogdan Bojarski are discussed. References. 16