Асимптотична поведінка цілих функій з винятковими значениями у співідношенні Бореля
Hexaй Mf(r) i μf(r) — відповідно максимум модуля i максимальний член цілої функції f, а l(r) — неперервно диференційовна i опукла відносно lnr фупкція. Встановлено, що для того щоб lnMf(r)∼lnμf(r),r→+∞ — для кожпої цілої функції f такої, що μf(r)∼l(r),r→+∞, необхідно i досить, щоб ln(rl'(r))=o(...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2001 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут математики НАН України
2001
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/172190 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Асимптотична поведінка цілих функій з винятковими значениями у співідношенні Бореля / П.В. Филевич // Український математичний журнал. — 2001. — Т. 53, № 4. — С. 522-530. — Бібліогр.: 7 назв. — рос. |