Multi-interval dissipative Sturm—Liouville boundary-value problems with distributional coefficients

The paper investigates spectral properties of multi-interval Sturm–Liouville operators with distributional coefficients. Constructive descriptions of all self-adjoint and maximal dissipative/accumulative extensions in terms of boundary conditions are given. Sufficient conditions for the resolvents...

Full description

Saved in:
Bibliographic Details
Date:2020
Main Author: Goriunov, A.S.
Format: Article
Language:English
Published: Видавничий дім "Академперіодика" НАН України 2020
Series:Доповіді НАН України
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/173046
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Multi-interval dissipative Sturm—Liouville boundary-value problems with distributional coefficients / A.S. Goriunov // Доповіді Національної академії наук України. — 2020. — № 7. — С. 10-16. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The paper investigates spectral properties of multi-interval Sturm–Liouville operators with distributional coefficients. Constructive descriptions of all self-adjoint and maximal dissipative/accumulative extensions in terms of boundary conditions are given. Sufficient conditions for the resolvents of these operators to be operators of the trace class and for the systems of root functions to be complete are found. The results are new for one-interval boundary-value problems as well.