Multi-interval dissipative Sturm—Liouville boundary-value problems with distributional coefficients
The paper investigates spectral properties of multi-interval Sturm–Liouville operators with distributional coefficients. Constructive descriptions of all self-adjoint and maximal dissipative/accumulative extensions in terms of boundary conditions are given. Sufficient conditions for the resolvents...
Saved in:
| Date: | 2020 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Видавничий дім "Академперіодика" НАН України
2020
|
| Series: | Доповіді НАН України |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/173046 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Multi-interval dissipative Sturm—Liouville boundary-value problems with distributional coefficients / A.S. Goriunov // Доповіді Національної академії наук України. — 2020. — № 7. — С. 10-16. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | The paper investigates spectral properties of multi-interval Sturm–Liouville operators with distributional coefficients.
Constructive descriptions of all self-adjoint and maximal dissipative/accumulative extensions in terms of
boundary conditions are given. Sufficient conditions for the resolvents of these operators to be operators of the
trace class and for the systems of root functions to be complete are found. The results are new for one-interval
boundary-value problems as well. |
|---|