Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Material
Скальные породы и скалоподобные материалы часто разрушаются при сжатии вследствие инициирования, распространения и слияния ранее возникших микротрещин. Выполнены экспериментальные и численные исследования механизма процесса слияния микротрещин в материалах типа скальных пород. Экспериментальные иссл...
Gespeichert in:
| Datum: | 2015 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2015
|
| Schriftenreihe: | Проблемы прочности |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/173385 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Material / H. Haeri, A. Khaloo, M.F. Marji // Проблемы прочности. — 2015. — № 5. — С. 109-125. — Бібліогр.: 41 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-173385 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1733852025-02-23T17:18:20Z Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Material Экспериментальное и численное моделирование механизма слияния трещин в материалах типа скальных пород Haeri, H. Khaloo, A. Marji, M.F. Научно-технический раздел Скальные породы и скалоподобные материалы часто разрушаются при сжатии вследствие инициирования, распространения и слияния ранее возникших микротрещин. Выполнены экспериментальные и численные исследования механизма процесса слияния микротрещин в материалах типа скальных пород. Экспериментальные исследования включают в себя испытания на одноосное сжатие образцов, изготовленных из смеси цемента марки портланд пуццолан, слюды и воды.. Скельні породи і скелеподібні матеріали часто руйнуються при стисненні внаслідок ініціювання, поширення і злиття мікротріщин, що з’явилися раніше. Виконано експериментальні і числові дослідження механізму процесу злиття мікротріщин у матеріалах типу скельних порід. Експериментальні дослідження включають випробування на одновісний стиск зразків, виготовлених із суміші цементу марки портланд пуцолан, слюди і води. 2015 Article Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Material / H. Haeri, A. Khaloo, M.F. Marji // Проблемы прочности. — 2015. — № 5. — С. 109-125. — Бібліогр.: 41 назв. — англ. 0556-171X https://nasplib.isofts.kiev.ua/handle/123456789/173385 539.4 en Проблемы прочности application/pdf Інститут проблем міцності ім. Г.С. Писаренко НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Научно-технический раздел Научно-технический раздел |
| spellingShingle |
Научно-технический раздел Научно-технический раздел Haeri, H. Khaloo, A. Marji, M.F. Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Material Проблемы прочности |
| description |
Скальные породы и скалоподобные материалы часто разрушаются при сжатии вследствие инициирования, распространения и слияния ранее возникших микротрещин. Выполнены экспериментальные и численные исследования механизма процесса слияния микротрещин в материалах типа скальных пород. Экспериментальные исследования включают в себя испытания на одноосное сжатие образцов, изготовленных из смеси цемента марки портланд пуццолан, слюды и воды.. |
| format |
Article |
| author |
Haeri, H. Khaloo, A. Marji, M.F. |
| author_facet |
Haeri, H. Khaloo, A. Marji, M.F. |
| author_sort |
Haeri, H. |
| title |
Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Material |
| title_short |
Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Material |
| title_full |
Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Material |
| title_fullStr |
Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Material |
| title_full_unstemmed |
Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Material |
| title_sort |
experimental and numerical simulation of the microcrack coalescence mechanism in rock-like material |
| publisher |
Інститут проблем міцності ім. Г.С. Писаренко НАН України |
| publishDate |
2015 |
| topic_facet |
Научно-технический раздел |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/173385 |
| citation_txt |
Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Material / H. Haeri, A. Khaloo, M.F. Marji // Проблемы прочности. — 2015. — № 5. — С. 109-125. — Бібліогр.: 41 назв. — англ. |
| series |
Проблемы прочности |
| work_keys_str_mv |
AT haerih experimentalandnumericalsimulationofthemicrocrackcoalescencemechanisminrocklikematerial AT khalooa experimentalandnumericalsimulationofthemicrocrackcoalescencemechanisminrocklikematerial AT marjimf experimentalandnumericalsimulationofthemicrocrackcoalescencemechanisminrocklikematerial AT haerih éksperimentalʹnoeičislennoemodelirovaniemehanizmasliâniâtreŝinvmaterialahtipaskalʹnyhporod AT khalooa éksperimentalʹnoeičislennoemodelirovaniemehanizmasliâniâtreŝinvmaterialahtipaskalʹnyhporod AT marjimf éksperimentalʹnoeičislennoemodelirovaniemehanizmasliâniâtreŝinvmaterialahtipaskalʹnyhporod |
| first_indexed |
2025-11-24T02:51:53Z |
| last_indexed |
2025-11-24T02:51:53Z |
| _version_ |
1849638480745857024 |
| fulltext |
UDC 539.4
Experimental and Numerical Simulation of the Microcrack Coalescence
Mechanism in Rock-Like Materials
H. Haeri,
a,1
A. Khaloo,
b
and M. F. Marji
c
a Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
b Center of Excellence in Structure and Earthquake Engineering, Sharif University of Technology,
Tehran, Iran
c Faculty of Mining and Metallurgy, Institution of Engineering, Yazd University, Yazd, Iran
1 haerihadi@gmail.com
ÓÄÊ 539.4
Ýêñïåðèìåíòàëüíîå è ÷èñëåííîå ìîäåëèðîâàíèå ìåõàíèçìà ñëèÿíèÿ
òðåùèí â ìàòåðèàëàõ òèïà ñêàëüíûõ ïîðîä
Õ. Õàýðè, À. Õàëó, Ì. Ô. Ìàðäæè
à Ôàêóëüòåò ãðàæäàíñêîãî ñòðîèòåëüñòâà, Òåõíîëîãè÷åñêèé óíèâåðñèòåò Øàðèô, Òåãåðàí,
Èðàí
á Öåíòð êà÷åñòâà ñîîðóæåíèé è èíæåíåðíîé ñåéñìîëîãèè, Òåõíîëîãè÷åñêèé óíèâåðñèòåò
Øàðèô, Òåãåðàí, Èðàí
â Ôàêóëüòåò ãîðíîãî äåëà è ìåòàëëóðãèè, Óíèâåðñèòåò ã. Éåçä, Èðàí
Ñêàëüíûå ïîðîäû è ñêàëîïîäîáíûå ìàòåðèàëû ÷àñòî ðàçðóøàþòñÿ ïðè ñæàòèè âñëåäñòâèå
èíèöèèðîâàíèÿ, ðàñïðîñòðàíåíèÿ è ñëèÿíèÿ ðàíåå âîçíèêøèõ ìèêðîòðåùèí. Âûïîëíåíû ýêñïå-
ðèìåíòàëüíûå è ÷èñëåííûå èññëåäîâàíèÿ ìåõàíèçìà ïðîöåññà ñëèÿíèÿ ìèêðîòðåùèí â ìàòå-
ðèàëàõ òèïà ñêàëüíûõ ïîðîä. Ýêñïåðèìåíòàëüíûå èññëåäîâàíèÿ âêëþ÷àþò â ñåáÿ èñïûòàíèÿ
íà îäíîîñíîå ñæàòèå îáðàçöîâ, èçãîòîâëåííûõ èç ñìåñè öåìåíòà ìàðêè ïîðòëàíä ïóööîëàí,
ñëþäû è âîäû. Ñëèÿíèå ìèêðîòðåùèí èçó÷àåòñÿ íà òîíêèõ îáðàçöàõ ñ ïîìîùüþ ñêàíè-
ðóþùåãî ýëåêòðîííîãî ìèêðîñêîïà. Ïðåäïîëàãàåòñÿ, ÷òî âêðàïëåíèÿ ñëþäû èãðàþò ðîëü
ìèêðîòðåùèí â îáðàçöàõ. Òàêæå ïðîâåäåíû íåêîòîðûå àíàëèòè÷åñêèå è ÷èñëåííûå èññëå-
äîâàíèÿ äëÿ ìîäåëèðîâàíèÿ ýêñïåðèìåíòàëüíî íàáëþäàåìîãî ÿâëåíèÿ ñëèÿíèÿ ìèêðîòðåùèí â
îáðàçöàõ. Äëÿ îöåíêè êîýôôèöèåíòîâ èíòåíñèâíîñòè íàïðÿæåíèé ïî ìîäå I è II â âåðøèíàõ
ìèêðîòðåùèí èñïîëüçóåòñÿ êîñâåííûé ìåòîä ãðàíè÷íûõ ýëåìåíòîâ âûñîêîãî ïîðÿäêà, èçâåñò-
íûé êàê ìåòîä ðàçðûâà ïåðåìåùåíèé âûñîêîãî ïîðÿäêà, ÷òî ïîçâîëÿåò ïðèìåíÿòü ñïå-
öèàëüíûå ýëåìåíòû ó âåðøèíû òðåùèíû äëÿ ó÷åòà ñèíãóëÿðíîñòè ïîëåé íàïðÿæåíèé è
ïåðåìåùåíèé âáëèçè âåðøèíû òðåùèíû.  ïðîãðàììå ðàñ÷åòà íàïðÿæåíèé èñïîëüçóåòñÿ
êðèòåðèé ðàçðóøåíèÿ ïî ìàêñèìàëüíûì êàñàòåëüíûì íàïðÿæåíèÿì â ðàìêàõ ëèíåéíîé ìåõà-
íèêè ðàçðóøåíèÿ. Ïðè ýòîì ðàñïðîñòðàíåíèå è ñëèÿíèå ìèêðîòðåùèí, ðàñïðåäåëåííûõ â
ñêàëüíîé ïîðîäå ïî ñëó÷àéíîìó çàêîíó, îöåíèâàëîñü ïóòåì ÷èñëåííîãî ìîäåëèðîâàíèÿ íà
îñíîâå èòåðàòèâíîãî àëãîðèòìà. Ïîëó÷åííûå ðàñ÷åòíûå ðåçóëüòàòû ñðàâíèâàþòñÿ ñ ñîîò-
âåòñòâóþùèìè ýêñïåðèìåíòàëüíûìè è ÷èñëåííûìè äàííûìè ïî ñëèÿíèþ ìèêðîòðåùèí â
ñêàëîïîäîáíûõ ìàòåðèàëàõ.
Êëþ÷åâûå ñëîâà: ñëèÿíèå ìèêðîòðåùèí, êîýôôèöèåíòû èíòåíñèâíîñòè íàïðÿæåíèé,
÷èñëåííîå è ýêñïåðèìåíòàëüíîå ìîäåëèðîâàíèå, ìåòîä ðàçðûâà ïåðåìåùåíèé âûñî-
êîãî ïîðÿäêà, ñêàëîïîäîáíûå ìàòåðèàëû.
© H. HAERI, A. KHALOO, M. F. MARJI, 2015
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 109
Introduction. Microcracks may be considered as the main defects in rocks and rock
materials. Microcracks usually initiate, propagate and coalesce to produce the macrocracks,
which are responsible for the final breaking of brittle solids. One of the most challenging
problems in fracture mechanics is simulation of the failure mechanism and crack propagation
process in brittle solids such as rocks [1–4]. The mechanism of crack propagation in solid
materials can be investigated in micro- and macroscales, which deal with initiation and
propagation of microcracks and bigger cracks, respectively.
The presence of microcracks in solids is the most effective issue pertaining to the
mechanical behavior of brittle materials. It can be found to what extent macrofracturing
mechanism is effected by microfracturing mechanism [5–8].
The mechanical behavior of rocks as the brittle materials also depends on their
micromechanical structure [9]. The microcracks typically nucleate at the pores, inclusions,
sharp microcracks, and triple connections where the stress concentration may occur. The
creation and propagation of microcracks play an important role in predicting the cyclic
breakage process of rocks [10]. The pre-existing microcracks can propagate and extend to
form macrocracks [11]. These macrocracks may be further propagated to form the kinked
or curved cracks containing wing and secondary cracks [12, 13]). The breakage mechanism
of brittle solids with randomly orientated microcracks depends on the degree of micro-
cracks interacting and their coalescence path which may finally leads to a crack in
macroscale. In the failure process of brittle rocks (under uniaxial compression), two types
of cracks may be observed which are originating from the tips of the pre-existing
microcracks (i.e., wing cracks and secondary cracks as shown in Fig. 1).
Wing cracks may generally initiate at or near the tips of the pre-existing microcracks
and continue their propagation in a curved form path. The secondary cracks may also
nucleate from the tips of the pre-existing cracks simultaneously or after the wing cracks
nucleation and propagation. [14–17].
Compression tests are of versatile use to perform most experiments on various types
of polycrystalline solids such as geomaterials [14–24]. For example, Cheng-zhi and Ping
[25] have conducted some compression tests on rock-like specimens containing closed
H. Haeri, A. Khaloo, and M. F. Marji
110 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
Fig. 1. Wing and secondary cracks observed near the tip of a pre-existing microcrack.
multi-fissures. The influence of natural flaws inclination angles and the fissures distribution
density on the breakage mechanism of fractured bodies have been studied in their research
work.
Many numerical methods such as finite element method (FEM), boundary element
method (BEM), discrete element method (DEM), and displacement discontinuity method
(DDM) have been developed in the literature which can be effectively used for the
simulation of microcracks initiation and propagation in geomaterials.
The geomaterials such as rocks and concretes are behaving elastically and in a brittle
manner so that the concept of linear elastic fracture mechanics (LEFM) proposed by Irwin
[26 ] may be suitable to study the mechanism of microcracks propagation and coalescence
in these solid substances. Based on LEFM suggestion, the three modes of stress intensity
factors, K I (mode I or opening mode), K II (mode II or shearing mode), and K III (mode
III or tearing mode), are being used for crack analysis of brittle materials [26]. Basically,
the three classic fracture criteria; maximum tangential stress criterion (�-criterion), the
minimum energy density criterion (S-criterion) and the maximum energy release rate
criterion (G-criterion) or any modified form of these criteria (e.g., F-criterion which is a
modified energy release rate criterion) have been used to study the crack initiation and
propagation under mixed mode I–II loading conditions (which are the most applicable in
rock fracture mechanics) [27–30]. In most cases either of these three fracture criteria can be
suitably used for fracture analysis of rocks and rock-like materials [31].
Numerical or analytical approaches are mostly used to investigate the rock breakage
mechanism due to complexity of the fracture mechanics problems in brittle materials [32].
In this study, a comprehensive analytical, numerical and experimental approach is developed
to analyze the crack propagation in rocks and rock-like materials under uniaxial compressive
loading. A typical analytical study is presented first, and then several compression tests on
cylindrical specimens of rock-like materials containing microcracks are performed. The
rock-like specimens prepared from PCC, mica sheets (to represent the random microcracks)
and water. These specimens are tested under uniaxial compression in a concrete laboratory.
The same experiments are also simulated numerically by a modified higher-order
displacement discontinuity method where the microcracks’ propagation mechanism are
studied based on Mode I and Mode II SIFs and maximum tangential stress (MTS) criterion.
In this research a modified indirect boundary element method based on the cubic variations
of displacement discontinuities along a straight line microcrack is developed to implement
the special crack tip elements and evaluate the Mode I and Mode II SIFs. A sophisticated
computer code is prepared using a higher-order displacement discontinuity variation with
three equal subelements near each crack end.
The well-known scanning electron microscopy (SEM) technique is used for a direct
observation of microcracks, their propagation paths and coalescence. By comparing the
SEM results of microcrack propagation paths with those numerically predicted, the
proposed numerical method allows one to validate the present microcrack analyses of
rock-like materials.
1. A Center Slant Crack in an Infinite Body. A center slant crack is considered in an
infinite body with a half-length b� 5 mm and inclination angle � changing
counterclockwise from the y axis, and the compressive stress � is acting parallel to the y
axis (as shown in Fig. 2). The analytical solution of this typical fracture mechanics problem
is given in the literature [19].
Based on the configuration shown in Fig. 2, the analytical solution for Mode I (K I )
and Mode II (K II ) SIFs in an infinite body containing a center slant crack can be estimated
as
K b
K b
I I
II II
��
��
� � �
� � �
,
,
(1)
Experimental and Numerical Simulation …
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 111
where � (in MPa) is the compressive stress at the crack initiation state, b (in mm) is half
of the crack length, and � I and � II are the non-dimensional coefficients (depending on
the crack inclination angle �) which can be expressed as
�
�
�
�
I
II
�
�
�
1 2
2
2
2
cos
,
sin
.
(2)
Equations (1) and (2) give the SIFs at the microcrack tips which are affected by the
crack geometry such as the microcrack length b and the microcrack inclination angle �.
The center slant crack problem in an infinite body under uniform tension (Fig. 3) has
also been solved by different researchers, e.g., Guo et al. [43] (to compare the accuracy of
different crack analyses).
Most of the previous researchers used the constant element displacement discontinuity
with a special crack tip element but considered different crack inclination angles (e.g.,
�� 30, 40, 50, 60, 70, and 80 ). To evaluate the microcrack initiation angle
0, the
maximum tangential stress criterion (�
-criterion), is being used in this microcrack
analysis. Table 1 compares the results of this analysis (using the two dimensional higher-
order displacement discontinuity method (HDDM2D Code) with the results of other models
cited in the literature. As it can be seen in Table 1, the numerical results obtained by
HDDM2D Code are comparatively more accurate.
2. Experiments Performed on Rock-Like Materials with Random Microcracks. A
conventional compressive test apparatus in a concrete or rock mechanics laboratory can be
used to test the specimens of rock-like material. These specimens are the specially prepared
samples from portland pozzolana cement (PPC), water and mica sheets. A typical specimen
is shown in Fig. 4. The mica sheets are approximately 5 mm in size and simulate the
number of random pre-existing microcracks within the rock-like specimens. In this
research, a cylindrical specimen with a height to diameter ratio of 1 (the diameter and
length of the specimens are both equal to 54 mm) is being provided and tested under
uniaxial compression in the laboratory. The ingradients’ mixing ratios and the mechanical
112 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
Fig. 2 Fig. 3
Fig. 2. A center slant crack in an infinite plane under uniaxial compression.
Fig. 3. A center slant microcrack in an infinite body under uniform tension parallel to the y axis.
H. Haeri, A. Khaloo, and M. F. Marji
properties of the rock-like specimens were obtained from the experimental tests performed
in the laboratory and presented in Table 2. All the tests were performed based on ISRM
suggested methods [33, 34]. Then, the polished sections are specially prepared as shown in
Fig. 4. The initiation and propagation of microcracks in the rock-like specimens (containing
random microcracks) are studied by SEM.
In the present analysis, a novel effective method is developed to investigate the wing
crack initiation and propagation (nucleating from the original microcrack tips). The
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 113
T a b l e 1
Microcrack Initiation Angle
0 for a Center Slant Microcrack Problem
Obtained by Different Methods
Crack
inclination
angles
�, deg
0 , deg
Results obtained by HDDM2D code Results obtained by Guo et al. [35, 36]
Cubic elements S-criterion Experimental Numerical
30 62.01 63.5 62.4 67.0
40 55.65 56.7 55.1 59.0
50 51.29 49.5 51.1 51.0
60 43.22 41.9 43.1 41.0
70 30.26 31.8 30.7 29.0
80 17.91 18.5 17.3 15.0
T a b l e 2
Ratio of Ingredients and Mechanical Characteristics of Rock-Like Specimen
Ingredients’ ratio (%) Mechanical properties
PPC Mica
sheets
Water Tensile
strength
(MPa)
Uniaxial
compression
strength
(MPa)
Fracture
toughness
(MPa m� 1 2/ )
Elastic
modulus
(GPa)
Poisson’s
ratio
50.5 5.0 44.5 1.5 3.7 2.0 5.0 0.17
Fig. 4. Experimental set up for uniaxial compression test containing microcracks and the polished
sections used for SEM study.
Experimental and Numerical Simulation …
polished sections involving random microcracks are specially prepared and studied under
SEM. In preparing the polished sections, it is tried to preserve the breakage surface,
therefore, the polished sections are taken from the central part of the loaded specimens and
are then soaked into a mixture of resin, cobalt oxide and HCL. Some good images are
prepared to visualize the microcracks propagation paths and their coalescence phenomena
during the fracturing process of the rock materials samples.
3. Experimental Results. Two types of emanating cracks form the tips of the
pre-existing microcracks in brittle materials may be produced under uniaxial compressive
loading conditions. The primary wing cracks usually produced due to induced tensile
stresses near the crack ends and secondary cracks (oblique and/or coplanar) which may be
produced due to shear stresses along the crack surfaces. The propagating wing cracks are
expected to extend parallel to the direction of maximum compression.
In a crack propagation process, the secondary cracks may not always appear but the
wing cracks are suddenly appear at the starting point of microcrack growth. These
propagating wing cracks may also further extend to coalesce with the other nearby
microcracks, and forming the final macrocracks. The macrocracks (or bigger cracks) may
propagate and coalesce with other microcracks or cracks to cause the final breakage of the
material.
In this research, a series of uniaxial compression tests are carried out on rock-like
specimens, and the propagation direction of microcracks are determined. Some of the
experimentally observed wing and secondary cracks at the tips of the microcracks are
shown in Figs. 5–8, respectively. It is experimentally observed that the wing cracks occur
when the microcrack inclination angle � (with respect to the loading direction) is between
30 and 80 . The wing cracks may not occur when the pre-existing microcrack angle is less
than 30 . However, it may be deduced that the wing cracks initiation angles ranged between
30 and 70 with respect to the direction of the pre-existing microcracks.
114 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
Fig. 5. Wing cracks observed near the two tips of a pre-existing microcrack in rock-like specimens
under uniaxial compression (� � 22 ).
H. Haeri, A. Khaloo, and M. F. Marji
As shown in Fig. 5, wing cracks initiate at both tips of a microcrack. However,
secondary crack may initiate only at the upper tip of a microcrack. In Fig. 6, wing and
secondary cracks initiate at the same time from the two tips of a microcrack. In Figs. 7 and
8, only the wing cracks are observed and the secondary cracks do not exist.
The rock-like specimens (made from cement, mica sheets and water) have a lower
strength compared to that of natural rocks (such as granite or marble). Due to much lower
strength of mica sheets compared to that of the matrix of the prepared specimens, the mica
sheets are considered to play the role of microcracks within the rock-like samples. The
experimental results obtained by testing such samples are studied by SEM and the
propagation angles and paths of the microcracks are traced. These observations are in good
agreement with the numerical results obtained by the numerical simulations (as explained
in the next section).
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 115
Fig. 6. Wing and secondary cracks observed near the two tips of a pre-existing microcrack in
rock-like specimens under uniaxial compression (� � 116 ).
Experimental and Numerical Simulation …
4. Numerical Study of Propagation and Coalescence of Random Microcracks.
The experimental tests can be used to visualize the microcracks propagation and
coalescence and also they can be used to validate the proposed numerical simulation
developed in this study for the investigation of rock breakage mechanism due to the
propagation of pre-existing microcracks in rock-like materials. The specimens (representing
rock-like specimen), are made of PPC, water and mica sheets and are tested as explained in
the previous section. In this section, a higher-order displacement discontinuity method is
proposed to simulate the microcrack propagation mechanism in rock-like specimens.
4.1. The Higher-Order Displacement Discontinuity Method. The higher-order
displacement discontinuity method (DDM) is a category of the indirect boundary element
method used for solving the linear elastic problems with specified boundary conditions. A
third-order variation of continuous stress and discontinuous displacement fields at the
Fig. 7. Wing and secondary cracks observed near the two tips of a pre-existing microcrack in
rock-like specimens under uniaxial compression (� � 36 ).
116 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
H. Haeri, A. Khaloo, and M. F. Marji
boundaries (discretized into a proper number of line crack elements) is assumed [35–40]. In
the present study, a two-dimensional higher-order displacement discontinuity method
(HDDM2D) employing the cubic displacement discontinuity (DD) elements (third-order DD
discontinuity elements) in order to obtain more accurate displacement discontinuities along
the boundary of the problem. In a cubic displacement discontinuity (DD) variation each
source element is divided into four equal subelements. Each subelement contains a central
node where the nodal displacement discontinuities are numerically evaluated. Based on this
variation of DD, the displacement discontinuity D j ( )� for each cubic element can be
formulated as
D Dj i j
i
i
( ) ( ) ,� ��
�
�
1
4
j x y� , , (3)
where Dx
1, Dy
1 , Dx
2, Dy
2, Dx
3, Dy
3, Dx
4 , and Dy
4 are the cubic nodal displacement
discontinuities and the collocation shape functions � i ( )� can be expressed as
�
�
1 1
3
1
2
1
2 3
1
3
2 1
3
1
3 3 48
9 9
( ) ( ) ( ),
( ) (
� � � �
�
�� � � �
� �
a a a a
a a2
1
2 3
1
3
3 1
3
1
2
1
2 3
1
16
9 9 16
� � �
� � � �
� �
� � � �
a a
a a a a
) ( ),
( ) ( ) (� 3
4 1
3
1
2
1
2 3
1
33 3 48
),
( ) ( ) ( ).� � � � ��� � � �a a a a
(4)
Here a a a a1 2 3 4� � � . It should be noted that a cubic element has 4 nodes, which are
located at the centers of its four subelements as shown in Fig. 9.
Fig. 8. Wing cracks observed near the two tips of a pre-existing microcrack in rock-like specimens
under uniaxial compression (� � 168 ).
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 117
Experimental and Numerical Simulation …
As shown in Fig. 9, a cubic displacement discontinuity (CDD) element is divided into
four equal subelements (each subelement contains a central node for which the nodal
displacement discontinuities are numerically evaluated).
The singularities of the stresses and displacements near the crack ends may reduce the
accuracy of the displacement discontinuities at the nodal points near the crack tips, special
crack tip elements can be used to overcome this problem and increase the accuracy of the
DDs near the crack tips [40]. As shown in Fig. 10, a DD variation for three nodes can be
formulated using a special crack tip element containing three nodes (or having three special
crack tip subelements). Then the displacement discontinuity function D j ( )� can be
defined as
D D a D a D aj C j C j C j( ) [ ( )] ( ) [ ( )] ( ) [ ( )] ( )� � � �� � �� � �1
1
2
2
3
3 , (5)
where the crack tip element has a length a a a a� � �1 2 3.
Considering a crack tip element with the three equal subelements (a a a1 2 3� � ), the
special shape functions �C1 ( )� , �C 2 ( ),� and �C 3 ( )� can be obtained as
�
�
C
C
a a a
1
1 2
1
1 2
3 2
1
3 2
5 2
1
5 2
2
15
8 8
5
( ) ,
( )
/
/
/
/
/
/
�
� � �
�
� � �
�
� � � �
�
�
1 2
1
1 2
3 2
1
3 2
5 2
1
5 2
3
1 2
8
3
2 3 4 3
3
8 5
/
/
/
/
/
/
/
,
( )
a a a
C
� �
��
a a a1
1 2
3 2
1
3 2
5 2
1
5 22 5 8 5/
/
/
/
/
.� �
� �
(6)
118 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
Fig. 9. The cubic collocation technique used in the higher-order displacement discontinuity method.
Fig. 10. A special crack tip element with three equal subelements for a right crack tip.
H. Haeri, A. Khaloo, and M. F. Marji
4.2. Numerical Simulation of the Pre-Cracked Specimens. A center slant microcrack
in an infinite body under uniaxial compression (Fig. 2) is simulated numerically by the
higher-order displacement discontinuity method. The numerical results are compared with
the corresponding analytical results already given in Section 2 of this study. This test
problem provides a better knowledge of the crack propagation mechanism and failure of the
brittle materials such as rocks. It also provides a good opportunity to verify the numerical
and analytical values of the mixed mode SIFs K I and K II for a typical problem. The
mechanical properties of a rock specimen (assuming to have a slant center crack in an
infinite plane) are given in Table 3. Assuming a LEFM concept [41], the Mode I and Mode
II stress intensity factors K I and K II , for different crack inclination angles are evaluated
numerically by means of the proposed numerical method [these results can also be estimated
analytically using Eqs. (1) and (2) given in Section 2]. The normalized Mode I and Mode II
SIFs are simplified as
K
K
b
K
K
b
N
N
I
I
II
II
�
�
� �
� �
,
.
(7)
The numerical and analytical results of the normalized SIFs K N
I and K N
II are shown
in Fig. 11, which illustrates the accuracy and usefulness of the proposed method for the
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 119
T a b l e 3
Mechanical Properties of a Center Slant Microcrack in an Infinite Plate
Description Parameter Value Unit
Microcrack length b 10 mm
Compressive stress � 10 MPa
Elastic modulus E 10 GPa
Poisson’s ratio � 0.2 –
Fracture toughness K cI 2 MPa m� 1 2/
Microcrack tip length L – mm
Microcrack inclination angle � – deg
Fig. 11. The analytical and numerical values of K N
I and K N
II for the center slant microcrack.
Experimental and Numerical Simulation …
crack analysis of brittle solids. In the numerical analysis of this problem, 7 cubic elements
have been used along the pre-existing crack, three special crack tip elements have been
used for each crack tip and the ratio of crack tip element length (L b� 0.1).
The validity of the proposed numerical method and the accuracy of the numerical
results are checked by comparing the computed wing crack initiation directions with their
corresponding experimental results given in Section 4. The wing crack initiation directions
obtained from the numerical simulation and laboratory experiments by considering various
microcrack inclination angles and microcrack sizes are tabulated in Table 4 for comparison.
This table clearly shows that the numerical results are in good agreement with the
experimental results.
5. Discussion. The experimental and numerical results given in this research are in
good agreement with those already given in literature. The following discussion verifies the
validity and accuracy of the present study.
Figure 12 schematically shows a rock-like specimen with length L� 120 mm and
width w� 60 mm ( )L w� 2 containing a center slant crack with a half-length b� 5 mm
and inclination angle � changing counterclockwise from the x axis [24]. A uniform
uniaxial compressive stress is assumed to be applied parallel to the y axis of the specimen.
120 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
T a b l e 4
The Microcrack Initiation Angle
for the Center Slant Microcrack Problem
as Obtained by the Proposed Numerical and Experimental Methods
Type
of microcracks
as shown
in Figs. 5–8
Microcrack
size
(mm)
Microcrack
inclination
angle
�, deg
Wing crack initiation direction
, deg
Numerical Experimental
Upper tip Lower tip Upper tip Lower tip
Fig. 5 3.5 22 67 60 66 66
Fig. 6 4.2 116 72 58 71 58
Fig. 7 3.9 36 50 45 51 51
Fig. 8 4.3 168 82 80 83 83
Fig. 12. A center slant crack in a finite plate.
H. Haeri, A. Khaloo, and M. F. Marji
In order to be able to compare the numerical results of the proposed problem with those
already given in the literature, the mechanical properties of the numerical model are taken
the same as those given by Lee and Jeon [24] for PMMA specimens that are presented in
Table 5. Lee and Jeon [24] conducted experimental tests on PMMA specimens with single
pre-existing crack as shown schematically in Fig. 13. The crack propagation path is mainly
due to the wing cracks produced at the crack tips which propagate in direction of the
uniaxial compressive stress. In the present study, the problem shown in Fig. 12 is simulated
numerically and the results are compared with those obtained recently by Lee and Jeon
[24].
In the numerical verification of the results, the typical rock-like specimen is the
PMMA with mode I fracture toughness K cI � 1.7 MPa m� 1 2/ which is estimated based on
the experimental results given by Lee and Jeon [24]. It should be noted that different
incremental propagation steps are used in the numerical analysis of the present problem.
The experimental [24] and numerical results of crack propagation path in specimens
containing single cracks with varying inclination angles �� 15, 30, 45, 60, and 90 are
shown in Figs. 13 and 14 for comparison.
Conclusions. The mechanism of microcrack propagation in brittle rocks is
investigated by analytical, experimental, and numerical methods. Further work is devoted to
investigate the crack propagation, cracks coalescence and crack propagation paths of the
rocks and rock-like materials under compressive loading condition. The microcrack
propagation in natural rocks is very complicated; therefore, some rock-like specimens are
T a b l e 5
Mechanical Properties of a PMMA Specimen [24]
Description Parameter Value Unit
Crack length 2b 10 mm
Compressive stress � 139 MPa
Elastic modulus E 2.9 GPa
Poisson’s ratio � 0.44 –
Fracture toughness K cI 1.7 MPa m� 1 2/
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 121
� � 15 � � 30 � � 45 � � 60 � � 90
Fig. 13. The crack propagation path of a single crack in the PMMA specimens with different crack
inclination angles � �15, 30, 45, 60, and 90 [24].
Experimental and Numerical Simulation …
prepared by mixing PPC, mica sheets and water. These specimens are tested under uniaxial
compression and the propagation and coalescence of random microcracks (mica sheets play
the role of microcracks within the specimen) are observed by SEM.
Based on the LEFM concept, the Mode I and Mode II stress intensity factors near the
microcrack ends are computed analytically and numerically. The maximum tangential stress
criterion (�-criterion) is used here to investigate the microcracks initiation and their
propagation directions. This criterion is implemented in the higher-order displacement
discontinuity (HDD) method by a computer code named as HDDM2D (i.e., a two-
dimensional HDD method for microcrack analysis).
In the present analysis, the direction of wing crack initiation is numerically predicted
and is compared to the corresponding experimental values observed by SEM. This
comparison show good agreements between the corresponding results obtained by these
two methods.
The experimental results obtained from microcracks in rock-like specimens show that
the crack propagation mechanism may have the same trend as those specimens containing
natural microcracks. The framework can be extended to the micromechanics of rocks and
rock-like materials under various loading conditions (e.g., triaxial compressive, tensile and
shear loading conditions).
Ð å ç þ ì å
Ñêåëüí³ ïîðîäè ³ ñêåëåïîä³áí³ ìàòåð³àëè ÷àñòî ðóéíóþòüñÿ ïðè ñòèñíåíí³ âíàñë³äîê
³í³ö³þâàííÿ, ïîøèðåííÿ ³ çëèòòÿ ì³êðîòð³ùèí, ùî ç’ÿâèëèñÿ ðàí³øå. Âèêîíàíî åêñïå-
ðèìåíòàëüí³ ³ ÷èñëîâ³ äîñë³äæåííÿ ìåõàí³çìó ïðîöåñó çëèòòÿ ì³êðîòð³ùèí ó ìàòå-
ð³àëàõ òèïó ñêåëüíèõ ïîð³ä. Åêñïåðèìåíòàëüí³ äîñë³äæåííÿ âêëþ÷àþòü âèïðîáóâàí-
íÿ íà îäíîâ³ñíèé ñòèñê çðàçê³â, âèãîòîâëåíèõ ³ç ñóì³ø³ öåìåíòó ìàðêè ïîðòëàíä
ïóöîëàí, ñëþäè ³ âîäè. Çëèòòÿ ì³êðîòð³ùèí âèâ÷àºòüñÿ íà òîíêèõ çðàçêàõ çà äîïîìî-
ãîþ ñêàíóþ÷îãî åëåêòðîííîãî ì³êðîñêîïà. Ïðèïóñêàºòüñÿ, ùî âêðàïëåííÿ ñëþäè
â³ä³ãðàþòü ðîëü ì³êðîòð³ùèí ó çðàçêàõ. Òàêîæ ïðîâåäåíî äåÿê³ àíàë³òè÷í³ ³ ÷èñëîâ³
äîñë³äæåííÿ äëÿ ìîäåëþâàííÿ ÿâèùà çëèòòÿ ì³êðîòð³ùèí ó çðàçêàõ, ùî ñïîñòåð³ãà-
ºòüñÿ åêñïåðèìåíòàëüíî. Äëÿ îö³íêè êîåô³ö³ºíò³â ³íòåíñèâíîñò³ íàïðóæåíü ïî ìîä³ I ³
II ó âåðøèí³ ì³êðîòð³ùèí âèêîðèñòîâóºòüñÿ íåïðÿìèé ìåòîä ãðàíè÷íèõ åëåìåíò³â
âèñîêîãî ïîðÿäêó, â³äîìèé ÿê ìåòîä ðîçðèâó ïåðåì³ùåíü âèñîêîãî ïîðÿäêó, ùî
äîçâîëÿº âèêîðèñòîâóâàòè ñïåö³àëüí³ åëåìåíòè â âåðøèí³ òð³ùèíè äëÿ âðàõóâàííÿ
ñèíãóëÿðíîñò³ ïîë³â íàïðóæåíü ³ ïåðåì³ùåíü á³ëÿ âåðøèíè òð³ùèíè. Ó ïðîãðàì³
122 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
� � 15 � � 30 � � 45 � � 60 � � 90
Fig. 14. Numerical simulation of the propagating paths for a single crack with variable crack
inclination angles � �15, 30, 45, 60, and 90 .
H. Haeri, A. Khaloo, and M. F. Marji
ðîçðàõóíêó íàïðóæåíü âèêîðèñòîâóºòüñÿ êðèòåð³é ðóéíóâàííÿ ïî ìàêñèìàëüíèõ äî-
òè÷íèõ íàïðóæåííÿõ ó ðàìêàõ ë³í³éíî¿ ìåõàí³êè ðóéíóâàííÿ. Ïðè öüîìó ïîøèðåííÿ ³
çëèòòÿ ì³êðîòð³ùèí, ðîçïîä³ëåíèõ ó ñêåëüí³é ïîðîä³ çà âèïàäêîâèì çàêîíîì, îö³íþ-
ºòüñÿ øëÿõîì ÷èñëîâîãî ìîäåëþâàííÿ íà îñíîâ³ ³òåðàòèâíîãî àëãîðèòìó. Îòðèìàí³
ðîçðàõóíêîâ³ ðåçóëüòàò ïîð³âíþþòüñÿ ç â³äïîâ³äíèìè åêñïåðèìåíòàëüíèìè ³ ÷èñëî-
âèìè äàíèìè ùîäî çëèòòÿ ì³êðîòð³ùèí ó ñêåëåïîä³áíèõ ìàòåð³àëàõ.
1. M. Bahaaddini, G. Sharrock, and B. K. Hebblewhite, “Numerical investigation of the
effect of joint geometrical parameters on the mechanical properties of a non-persistent
jointed rock mass under uniaxial compression,” Comput. Geotech., 49, 206–225
(2013).
2. L. N. Y. Wong and H. Q. Li, “Numerical study on coalescence of two pre-existing
coplanar flaws in rock,” Int. J. Solids Struct., 50, 3685–3706 (2013).
3. E. Mohtarami, A. Jafari, and M. Amini, “Stability analysis of slopes against combined
circular-toppling failure,” Int. J. Rock Mech. Min. Sci., 67, 43–56 (2014).
4. T. Funatsu, M. Kuruppu, and K. Matsui, “Effects of temperature and confining
pressure on mixed mode (I–II) and mode II fracture toughness of Kimachi sandstone,”
Int. J. Rock Mech. Min. Sci., 67, 1–8 (2014).
5. R. L. Kranz, “Crack-crack and crack-pore interactions in stressed granite,” Int. J. Rock
Mech. Min. Sci. Geomech. Abstr., 16, 37–47 (1979).
6. C. A. Tang, P. Lin, R. H. C. Wong, and K. T. Chau, “Analysis of crack coalescence in
rock-like materials containing three flaws – Part II: Numerical approach,” Int. J. Rock
Mech. Min. Sci., 38, 925–939 (2001).
7. M. Sagong and A. Bobet, “Coalescence of multiple flaws in a rock-model material in
uniaxial compression,” Int. J. Rock Mech. Min. Sci., 39, 229–241 (2002).
8. M. H. B. Nasseri and B. Mohanty, “Fracture toughness anisotropy in granitic rocks,”
Int. J. Rock Mech. Min. Sci., 45, 167–193 (2008).
9. A. Golshani, M. Oda, T. Takemura, and E. Munkhtogoo, “Numerical simulation of
the excavation damaged zone around an opening in brittle rock,” Int. J. Rock Mech.
Min. Sci., 44, 835–845 (2006).
10. Y. Ichikawa, K. Kawamura, K. Uesugi, et al., “Micro- and macrobehavior of granitic
rock: observations and viscoelastic homogenization analysis,” Comput. Meth. Appl.
Mech. Eng., 191, 47–72 (2001).
11. B. Obara, “Application of the image analysis method to the detection of
transcrystalline microcracks observed in microscope images,” Arch. Min. Sci., 50,
537–551 (2005).
12. M. F. Marji and E. Dehghani, “Kinked crack analysis by a hybridized boundary
element/boundary collocation method,” Int. J. Solids Struct., 47, 922–933 (2010).
13. M. F. Marji, “Numerical analysis of quasi-static crack branching in brittle solids by a
modified displacement discontinuity method,” Int. J. Solids Struct., 51, 1716–1736
(2014).
14. H. Horii and S. Nemat-Nasser, “Compression-induced microcrack growth in brittle
solids: axial splitting and shear failure,” J. Geophys. Res., 90, 3105–3125 (1985).
15. B. Shen, O. Stephansson, H. H. Einstein, and B. Ghahreman, “Coalescence of
fractures under hear stress experiments,” J. Geoph. Res., 100, 5975–5990 (1995).
16. A. Bobet, Fracture Coalescence in Rock Materials: Experimental Observations and
Numerical Predictions, Sc.D. Thesis, Massachusetts Institute of Technology,
Cambridge, USA (1997).
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 123
Experimental and Numerical Simulation ...
17. A. Bobet and H. H. Einstein, “Fracture coalescence in rock-type materials under
uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998a).
18. J. Yoon, “Application of experimental design and optimization to PFC model
calibration in uniaxial compression simulation,” Int. J. Rock Mech. Min. Sci., 44,
871–889 (2007).
19. C. H. Park, Coalescence of Frictional Fractures in Rock Materials, Ph.D. Thesis,
Purdue University, West Lafayette, Indiana (2008).
20. L. N. Y. Wong and H. H. Einstein, “Systematic evaluation of cracking behavior in
specimens containing single flaws under uniaxial compression,” Int. J. Rock Mech.
Min. Sci., 46, 239–249 (2009).
21. C. H. Park and A. Bobet, “Crack initiation and propagation from frictional fractures,”
in: Proc. of the 1st Canada-US Rock Mechanics Symposium (May 27–31, 2007,
Vancouver, Canada) (2007), pp. 557–564.
22. C. H. Park and A. Bobet, “Crack coalescence in specimens with open and closed
flaws: A comparison,” Int. J. Rock Mech. Min. Sci., 46, 819–829 (2009).
23. C. H. Park and A. Bobet, “Crack initiation, propagation and coalescence from
frictional flaws in uniaxial compression,” Eng. Fract. Mech., 77, 2727–2748 (2010).
24. H. Lee and S. Jeon, “An experimental and numerical study of fracture coalescence in
pre-cracked specimens under uniaxial compression,” Int. J. Solids Struct., 48,
979–999 (2011).
25. P. Cheng-zhi and C. Ping, “Failure characteristics and its influencing factors of
rock-like material with multi-fissures under uniaxial compression,” Trans. Nonferrous
Met. Soc. China, 22, 185–191 (2012).
26. G. R. Irwin, “Analysis of stresses and strain near the end of crack traversing a plate,”
J. Appl. Mech., 24, 361–364 (1957).
27. F. Erdogan and G. C. Sih, “On the crack extension in plates under loading and
transverse shear,” J. Basic Eng., 85, 519–527 (1963).
28. M. A. Hussian, E. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack
under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560 (1974),
pp. 2–28.
29. G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int.
J. Fract., 10, 305–321 (1974).
30. B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation
subjected to compression,” Eng. Fract. Mech., 47, 177–189 (1994).
31. B. N. Whittaker, R. N. Singh, and G. Sun, Rock Fracture Mechanics: Principles,
Design and Applications. Developments in Geotechnical Engineering, Elsevier,
Amsterdam (1992).
32. L. F. Vesga, L. E. Vallejo, and S. Lobo-Guerrero, “DEM analysis of the crack
propagation in brittle clays under uniaxial compression tests,” Int. J. Num. Anal. Meth.
Geomech., 32, 1405–1415 (2008).
33. F. Ouchterlony (ISRM Commission on Testing Methods), “Suggested methods for
determining the fracture toughness of rock,” Int. J. Rock Mech. Min. Sci. Geomech.
Abstr., 25, 71–97 (1988).
34. R. J. Fowell (ISRM Commission on Testing Methods), “Suggested method for
determining mode I fracture toughness using cracked chevron notched Brazilian disc
(CCNBD) specimens,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32, 57–64
(1995).
124 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
H. Haeri, A. Khaloo, and M. F. Marji
35. H. Guo, N. I. Aziz, and R. A. Schmidt, “Linear elastic crack tip modeling by
displacement discontinuity method,” Eng. Fract. Mech., 36, 933–943 (1990).
36. H. Guo, N. I. Aziz, and R. A. Schmidt, “Rock cutting study using linear elastic
fracture mechanics,” Eng. Fract. Mech., 41, 771–778 (1992).
37. C. Scavia, “Fracture mechanics approach to stability analysis of crack slopes,” Eng.
Fract. Mech., 35, 889–910 (1990).
38. M. H. Aliabadi and D. P. Rooke, Numerical Fracture Mechanics, Computational
Mechanics Publications, Southampton, UK (1991).
39. M. H. Aliabadi, Fracture of Rocks, Computational Mechanics Publications,
Southampton, UK (1998).
40. H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “On the strength and crack
propagation process of the pre-cracked rock-like specimens under uniaxial
compression,” Strength Mater., 46, No. 1, 140–152 (2014).
41. R. J. Sanford, Principles of Fracture Mechanics, Pearson Education, Upper Saddle
River, New Jersey (2003), pp. 1–15.
Received 22. 09. 2014
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 125
Experimental and Numerical Simulation ...
|