Anisotropic pinning and the mixed state galvanothermomagnetic properties of superconductors a phenomenological approach

In the presence of isotropic and anisotropic pinning the vortex dynamics is discussed in terms of phenomenologically introduced, nonlinear viscosities. The formulas tor linear galvanothermomagnetic effects are derived and analyzed under the condition at which the transport current or temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:1997
1. Verfasser: Shklovskij, V.A.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 1997
Schriftenreihe:Физика низких температур
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/175408
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Anisotropic pinning and the mixed state galvanothermomagnetic properties of superconductors a phenomenological approach / V.A. Shklovskij // Физика низких температур. — 1997. — Т. 23, № 10. — С. 1134-1138. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In the presence of isotropic and anisotropic pinning the vortex dynamics is discussed in terms of phenomenologically introduced, nonlinear viscosities. The formulas tor linear galvanothermomagnetic effects are derived and analyzed under the condition at which the transport current or temperature gradient is directed at arbitrary angle with respect to the unidirected twins, which cause the anisotropic pinning. It is shown that two new effects which appear due to the anisotropic pinning, namely (with respect to the reversal of the magnetic field direction) even transverse and odd longitudinal voltage, have a distinct origin. The first is due to the guided vortex motion, while the second appears only when anisotropic (in contrast with isotropic) pinning changes the Hall drag coefficient. We also show that the last effect might be masked in the experiment by a large, odd contribution, which has the same angular dependence and which appears due to the Ettingshausen effect In order to clarify the problem of influence of the twins on the Hall drag coefficient, we discuss the possibility of separating these two contributions in the experiment.