Exponential dichotomy and existence of almost periodic solutions of impulsive differential equations

We obtain conditions for existence of piecewise continuous almost periodic solutions of a system of impulsive differential equations with exponentially dichotomous linear part. The robustness of exponential dichotomy and exponential contraction for linear systems with small perturbations of right-ha...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Нелінійні коливання
Дата:2014
Автор: Tkachenko, V.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/177107
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Exponential dichotomy and existence of almost periodic solutions of impulsive differential equations / V.I. Tkachenko // Нелінійні коливання. — 2014. — Т. 17, № 4. — С. 546-557 — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-177107
record_format dspace
spelling Tkachenko, V.I.
2021-02-10T13:08:16Z
2021-02-10T13:08:16Z
2014
Exponential dichotomy and existence of almost periodic solutions of impulsive differential equations / V.I. Tkachenko // Нелінійні коливання. — 2014. — Т. 17, № 4. — С. 546-557 — Бібліогр.: 14 назв. — англ.
1562-3076
https://nasplib.isofts.kiev.ua/handle/123456789/177107
517.9
We obtain conditions for existence of piecewise continuous almost periodic solutions of a system of impulsive differential equations with exponentially dichotomous linear part. The robustness of exponential dichotomy and exponential contraction for linear systems with small perturbations of right-hand sides and points of impulsive action are studied.
Отримано умови iснування кусково-неперервних майже перiодичних розв’язкiв систем диференцiальних рiвнянь з iмпульсною дiєю та експоненцiально дихотомiчною лiнiйною частиною. Вивчено грубiсть експоненцiальної дихотомiї та експоненцiальної стiйкостi лiнiйних систем при малих збуреннях правих частин та точок iмпульсної дiї.
en
Інститут математики НАН України
Нелінійні коливання
Exponential dichotomy and existence of almost periodic solutions of impulsive differential equations
Експоненціальна дихотомія та існування майже періодичних розв’язків імпульсних диференціальних рівнянь
Экспоненциальная дихотомия и существование почти периодических решений импульсных дифференциальных уравнений
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Exponential dichotomy and existence of almost periodic solutions of impulsive differential equations
spellingShingle Exponential dichotomy and existence of almost periodic solutions of impulsive differential equations
Tkachenko, V.I.
title_short Exponential dichotomy and existence of almost periodic solutions of impulsive differential equations
title_full Exponential dichotomy and existence of almost periodic solutions of impulsive differential equations
title_fullStr Exponential dichotomy and existence of almost periodic solutions of impulsive differential equations
title_full_unstemmed Exponential dichotomy and existence of almost periodic solutions of impulsive differential equations
title_sort exponential dichotomy and existence of almost periodic solutions of impulsive differential equations
author Tkachenko, V.I.
author_facet Tkachenko, V.I.
publishDate 2014
language English
container_title Нелінійні коливання
publisher Інститут математики НАН України
format Article
title_alt Експоненціальна дихотомія та існування майже періодичних розв’язків імпульсних диференціальних рівнянь
Экспоненциальная дихотомия и существование почти периодических решений импульсных дифференциальных уравнений
description We obtain conditions for existence of piecewise continuous almost periodic solutions of a system of impulsive differential equations with exponentially dichotomous linear part. The robustness of exponential dichotomy and exponential contraction for linear systems with small perturbations of right-hand sides and points of impulsive action are studied. Отримано умови iснування кусково-неперервних майже перiодичних розв’язкiв систем диференцiальних рiвнянь з iмпульсною дiєю та експоненцiально дихотомiчною лiнiйною частиною. Вивчено грубiсть експоненцiальної дихотомiї та експоненцiальної стiйкостi лiнiйних систем при малих збуреннях правих частин та точок iмпульсної дiї.
issn 1562-3076
url https://nasplib.isofts.kiev.ua/handle/123456789/177107
citation_txt Exponential dichotomy and existence of almost periodic solutions of impulsive differential equations / V.I. Tkachenko // Нелінійні коливання. — 2014. — Т. 17, № 4. — С. 546-557 — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT tkachenkovi exponentialdichotomyandexistenceofalmostperiodicsolutionsofimpulsivedifferentialequations
AT tkachenkovi eksponencíalʹnadihotomíâtaísnuvannâmaižeperíodičnihrozvâzkívímpulʹsnihdiferencíalʹnihrívnânʹ
AT tkachenkovi éksponencialʹnaâdihotomiâisuŝestvovaniepočtiperiodičeskihrešeniiimpulʹsnyhdifferencialʹnyhuravnenii
first_indexed 2025-11-27T07:42:29Z
last_indexed 2025-11-27T07:42:29Z
_version_ 1850806774901243904
fulltext UDC 517.9 EXPONENTIAL DICHOTOMY AND EXISTENCE OF ALMOST PERIODIC SOLUTIONS OF IMPULSIVE DIFFERENTIAL EQUATIONS ЕКСПОНЕНЦIАЛЬНА ДИХОТОМIЯ ТА IСНУВАННЯ МАЙЖЕ ПЕРIОДИЧНИХ РОЗВ’ЯЗКIВ IМПУЛЬСНИХ ДИФЕРЕНЦIАЛЬНИХ РIВНЯНЬ V. I. Tkachenko Inst. Math. Nat. Acad. Sci. Ukraine Ukraine, 01601, Kyiv 4, Tereshchenkivska str., 3 We obtain conditions for existence of piecewise continuous almost periodic solutions of a system of impulsi- ve differential equations with exponentially dichotomous linear part. The robustness of exponential di- chotomy and exponential contraction for linear systems with small perturbations of right-hand sides and points of impulsive action are studied. Отримано умови iснування кусково-неперервних майже перiодичних розв’язкiв систем диферен- цiальних рiвнянь з iмпульсною дiєю та експоненцiально дихотомiчною лiнiйною частиною. Ви- вчено грубiсть експоненцiальної дихотомiї та експоненцiальної стiйкостi лiнiйних систем при малих збуреннях правих частин та точок iмпульсної дiї. 1. Introduction. We investigate the problem of existence of a piecewise continuous almost peri- odic solution for the semilinear impulsive differential equation du dt = A(t)u+ f(t, u), t 6= τj , (1) ∆u|t=τj = u(τj + 0)− u(τj) = Bju(τj) + gj(u(tj)), j ∈ Z, (2) where u : R → Rn. We use the concept of discontinuous almost periodic functions in the sense of [1, 2]. There are many works (see, e.g., [3 – 6] and references given there) devoted to a study of almost periodic solutions of impulsive systems. We assume that the corresponding linear homogeneous equation (if f ≡ 0, gj ≡ 0) has an exponential dichotomy. Matrices (I + Bj) may degenerate, det(I + Bj) = 0, for some (or all) j ∈ Z therefore, solutions of the system are not extendable to the negative semiaxis or are ambiguously extendable. Defining exponential dichotomy we require that only solutions of linear system from the unstable manifold can be unambiguously extended to the negative semiaxis. This corresponds to the definition of exponential dichotomy for evolution equations in an infinite dimensional Banach space [7 – 9]. Robustness is an impotent property of exponential dichotomy [8 – 10]. We mention arti- cles [11 – 14] where the robustness of exponential dichotomy for impulsive systems by small perturbations in the right-hand sides is proved. In this article we prove robustness of exponenti- al dichotomy also by small perturbation of points of the impulsive action. We use change of time in the system. Then approximation of the impulsive system by difference systems (see [7]) can be used. c© V. I. Tkachenko, 2014 546 ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 4 EXPONENTIAL DICHOTOMY AND EXISTENCE OF ALMOST PERIODIC SOLUTIONS . . . 547 2. Preliminaries and main results. Let X be an abstract Banach space and R and Z be the sets of real and integer numbers, respectively. We will consider the space PC(J,X), J ⊂ R, of all piecewise continuous functions x : J → → X such that i) the set T = {τj ∈ J : τj+1 > τj , j ∈ Z} is the set of discontinuities of x; ii) x(t) is left-continuous, x(tj−0) = x(tj), and there exists limt→tj+0 x(t) = x(tj+0) < ∞. Definition 1. A strictly increasing sequence {τk} of real numbers has uniformly almost peri- odic sequences of differences if for any ε > 0 there exists a relatively dense set of ε-almost periods common for all the sequences {τ jk}, where τ jk = τk+j − τk, j ∈ Z. Recall that an integer p is called an ε-almost period of a sequence {xk} if ‖xk+p − xk‖ < ε for any k ∈ Z. A sequence {xk} is almost periodic if for any ε > 0 there exists a relatively dense set of its ε-almost periods. Definition 2. A function ϕ(t) ∈ PC(R, X) is said to be W -almost periodic if i) the sequence {τk} of discontinuities of ϕ(t) has uniformly almost periodic sequences of differences; ii) for any ε > 0 there exists a positive number δ = δ(ε) such that if the points t′ and t′′ belong to the same interval of continuity and |t′ − t′′| < δ then ‖ϕ(t′)− ϕ(t′′)‖ < ε; iii) for any ε > 0 there exists a relatively dense set Γ of ε-almost periods such that if τ ∈ Γ, then ‖ϕ(t+ τ)− ϕ(t)‖ < ε for all t ∈ R which satisfy the condition |t− τk| ≥ ε, k ∈ Z. We consider the impulsive equation (1), (2) with the following assumptions: (H1) the matrix-valued function A(t) is Bohr almost periodic, (H2) the sequence of real numbers τk has uniformly almost periodic sequences of differences, and there exists θ > 0 such that infk τ 1 k = θ > 0, (H3) the sequence {Bj} of (n× n)-matrices is almost periodic, (H4) we shell use the notation Uρ = {x ∈ Rn : ‖x‖ ≤ ρ}; the function f(t, u) : R× Rn → → Rn is continuous in u and is W -almost periodic in t uniformly with respect to u ∈ Uρ with some ρ > 0, (H5) the sequence {gj(u)} of continuous functions Uρ → Rn is almost periodic uniformly with respect to u ∈ Uρ. By Lemma 22 [9, p. 192] for a sequence {τj} with uniformly almost periodic sequences of differences there exists the limit lim T→∞ i(t, t+ T ) T = p uniformly with respect to t ∈ R, where i(s, t) is the number of the points τk lying in the interval (s, t). The next lemma is proved in [9]. Lemma 1. Assume that the sequence of real numbers {τj} has uniformly almost periodic sequences of differences, the sequence {Bj} is almost periodic and the function f(t) : R → Rn is W -almost periodic. Then for any ε > 0 there exist a real number ν, 0 < ν < ε, and relatively dense sets of real numbers Γ and integers Q such that the following relations hold: ‖f(t+ r)− f(t)‖ < ε, t ∈ R, |t− τj | > ε, j ∈ Z, ‖Bk+q −Bk‖ < ε, ‖τ qk − r‖ < ν, for k ∈ Z, r ∈ Γ, q ∈ Q. ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 4 548 V. I. TKACHENKO Definition 3. A function x(t) : [t0, t1] → Rn is said to be a solution of the initial problem u(t0) = u0 ∈ Rn for the equation (1), (2) on [t0, t1] if (i) it is continuous in [t0, τk], (τk, τk+1], . . . , (tk+s, t1] with discontinuities of the first kind at the moments t = τj , (ii) x(t) is continuously differentiable in each of the intervals (t0, τk), (τk, τk+1), . . . , (tk+s, t1) and satisfies the equations (1) and (2) if t ∈ (t0, t1), t 6= τj and t = τj respectively, (iii) the initial value condition u(t0) = u0 is fulfilled. Together with equation (1), (2) we consider the linear homogeneous equation du dt = A(t)u, t 6= τj , (3) ∆u|t=τj = u(τj + 0)− u(τj) = Bju(τj), j ∈ Z. (4) Denote byX(t, s) the evolution operator of the linear equation without impulses (3). It satisfies X(τ, τ) = I, X(t, s)X(s, τ) = X(t, τ), t, s, τ ∈ R. We define an evolution operator for equation (3), (4) by U(t, s) = X(t, s) if τk < s ≤ t ≤ τk+1, and U(t, s) = X(t, τk)(I +Bk)X(τk, τk−1) . . . (I +Bm)X(τm, s), (5) if τm−1 < s ≤ τm < τm+1 < . . . < τk < t ≤ τk+1. Definition 4. We say that system (3), (4) has an exponential dichotomy on R with exponent β > 0 and bound M ≥ 1 if there exist projections P (t), t ∈ R, such that (i) U(t, s)P (s) = P (t)U(t, s), t ≥ s; (ii) U(t, s)|Im (P (s)) for t ≥ s is an isomorphism on Im (P (s)), then U(s, t) is defined as an inverse map from Im (P (t)) to Im (P (s)); (iii) ‖U(t, s)(1− P (s))‖ ≤ Me−β(t−s), t ≥ s; (iv) ‖U(t, s)P (s)‖ ≤ Meβ(t−s), t ≤ s. Now we formulate our main result. Theorem 1. Suppose that system (1), (2) satisfies assumptions (H1) – (H5), linear system (3), (4) is exponentially dichotomous with constants β and M ≥ 1. Assume that the functions f(t, u) and gj(u) satisfy the Lipschitz condition ‖f(t, u1)− f(t, u2)‖ ≤ L‖u1 − u2‖, ‖gj(u1)− gj(u2)‖ ≤ L‖u1 − u2‖, j ∈ Z, with a positive constant L and are uniformly bounded in the region t ∈ R, u ∈ Uρ : sup (t,u) ‖f(t, u)‖ ≤ H < ∞, sup u ‖gj(u)‖ ≤ H < ∞, j ∈ Z. Then for a sufficiently smallL the system (1), (2) has a unique piecewise continuousW -almost periodic solution. ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 4 EXPONENTIAL DICHOTOMY AND EXISTENCE OF ALMOST PERIODIC SOLUTIONS . . . 549 3. Robustness of exponential dichotomy. If system (3), (4) has an exponential dichotomy on R, then the nonhomogeneous equation du dt = A(t)u+ f(t), t 6= τj , (6) ∆u|t=τj = u(τj + 0)− u(τj) = Bju(τj) + gj , j ∈ Z, (7) has a unique solution bounded on R, u0(t) = ∞∫ −∞ G(t, s)f(s)(x)ds+ ∑ j∈Z G(t, τj)gj , (8) where G(t, s) = { U(t, s)(I − P (s)), t ≥ s, −U(t, s)P (s), t < s, is a Green function such that ‖G(t, s)‖ ≤ Me−β|t−s|, t, s ∈ R. (9) Analogously to [7, p. 250] it can be proved that a function u(t) is a bounded solution on the semiaxis [t0,+∞) if and only if u(t) = U(t, t0)(I − P (t0))u(t0) + +∞∫ t0 G(t, s)f(s)ds+ ∑ t0≤τj G(t, τj)gj , t ≥ t0. (10) A function u(t) is a bounded solution on the semiaxis (−∞, t0] if and only if u(t) = U(t, t0)P (t0)u(t0) + t0∫ −∞ G(t, s)f(s)ds+ ∑ t0>τj G(t, τj)gj , t ≤ t0. (11) Lemma 2. Let the impulsive system (3), (4) be exponentially dichotomous with positive con- stants β and M. Then there exists δ0 > 0 such that the perturbed systems du dt = Ã(t)u, t 6= τ̃j , (12) ∆u|t=τ̃j = u(τ̃j + 0)− u(τ̃j) = B̃ju(τ̃j), j ∈ Z, (13) with supj |τj − τ̃j | ≤ δ0, supj ‖Bj − B̃j‖ ≤ δ0, supt ‖A(t) − Ã(t)‖ ≤ δ0, are also exponentially dichotomous with some constants β1 ≤ β and M1 ≥ M. Proof. In system (3), (4), we introduce the change of time t = α(t′) such that τj = α(τ̃j), j ∈ Z, and the functionα is continuously differentiable and monotone on each interval (τ̃j , τ̃j+1). ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 4 550 V. I. TKACHENKO The function α can be chosen in a piecewise linear form, t = ajt ′ + bj , aj = τj+1 − τj τ̃j+1 − τ̃j , bj = τj+1τ̃j − τj τ̃j+1 τ̃j+1 − τ̃j if t′ ∈ (τ̃j , τ̃j+1). The function α(t′) satisfies the conditions |α(t′)− t′| ≤ δ0, ∣∣∣∣dα(t′) dt′ − 1 ∣∣∣∣ ≤ aδ0 with some positive constant a independent of j and δ0. System (3), (4) in the new coordinates v(t′) = u(α(t′)) has the form dv dt′ = A1(t ′)v, t 6= τ̃j , (14) ∆v|t′=τ̃j = v(τ̃j + 0)− v(τ̃j) = Bjv(τ̃j), j ∈ Z, (15) where A1(t ′) = dα(t′) dt′ A(α(t′)). System (14), (15) has evolution the operator U1(t ′, s′) = = U(α(t′), α(s′)). If system (3), (4) has exponential dichotomy with a projection P (t) at point t, then system (14), (15) has exponential dichotomy with the projection P1(t ′) = P (α(t′)) at point t′. Indeed, ‖U1(t ′, s′)(1− P1(s ′))‖ = ‖U(α(t′), α(s′))(1− P (α(s′))‖ ≤ ≤ Me−β(α(t ′)−α(s′)) ≤ M1e −β(t′−s′), t′ ≥ s′, where M1 = Me2δ0 . The inequality for an unstable manifold is proved analogously. The linear systems (14), (15) and (12), (13) have the same points of impulsive actions τ̃j , j ∈ Z, and ‖A1(t ′)− Ã(t′)‖ ≤ ∥∥∥∥dα(t′) dt′ A(α(t′))−A(α(t′)) ∥∥∥∥+ ‖A(α(t′))−A(t′)‖+ + ‖A(t′)− Ã(t′)‖ ≤ δ0 ( a sup t ‖A‖+ sup t ∥∥∥∥dAdt ∥∥∥∥+ 1 ) . Let Ũ(t′, s′) be an evolution operator for system (12), (13). To show that for a sufficiently small δ0 system (12), (13) is exponentially dichotomous we use the following version of Theo- rem 7.6.10 [7]: Assume that the evolution operator U1(t ′, s′) has an exponential dichotomy on R and satis- fies sup 0≤t′−s′≤d ‖U1(t ′, s′)‖ < ∞ (16) for some positive d. Then there exists η > 0 such that ‖Ũ(t′, s′)− U1(t ′, s′)‖ < η, whenever t− s ≤ d ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 4 EXPONENTIAL DICHOTOMY AND EXISTENCE OF ALMOST PERIODIC SOLUTIONS . . . 551 and the evolution operator Ũ(t′, s′) has an exponential dichotomy on R. For proving this statement we set tn = s′ + dn, Tn = U1(s ′ + d(n+ 1), s′ + dn), T̃n = Ũ(s′ + d(n+ 1), s′ + dn) for n ∈ Z. If the evolution operator U1(t, s) has an exponential dichotomy, then {Tn} has a discrete dicho- tomy in the sense of [7] (Definition 7.6.4). By [7] (Theorem 7.6.7), there exists η > 0 such that {T̃n} with supn ‖Tn − T̃n‖ ≤ η has a discrete dichotomy. Now we are in the conditions of [7, p. 229, 230], Excersise 10 (see also a more general statement [8], Theorem 4.1), that finishes the proof. The exponentially dichotomous system (12), (13) has the Green function G̃(t, s) = { Ũ(t, s)(I − P̃ (s)), t ≥ s, −Ũ(t, s)P̃ (s), t < s, such that ‖G̃(t, s)‖ ≤ M1e −β1|t−s|, t, s ∈ R. Lemma 3. The difference of the Green functions of the exponentially dichotomous linear systems (12), (13) and (14), (15) satisfies G̃(t, τ)−G1(t, τ) = ∞∫ −∞ G1(t, s)(Ã(s)−A1(s))G̃(s, τ)ds+ + ∑ j G1(t, τ̃j)(B̃j −Bj)G̃(τ̃j , τ), t, τ ∈ R, (17) where G1(t, τ) = G(α(t), α(τ)). Proof. G̃(t, τ) satisfies the equation du dt = A1(t)u+ (Ã(t)−A1(t))G̃(t, τ), ∆u|t=τ̃j = Bju+ (B̃j −Bj)G̃(τ̃j , τ). By (10), we have, for t ≥ τ, G̃(t, τ) = U1(t, τ)(I − P1(τ))G̃(τ, τ) + +∞∫ τ G1(t, s)(Ã(s)−A1(s))G̃(s, τ)ds+ + ∑ τ≤τ̃j G1(t, τ̃j)(B̃j −Bj)G̃(τ̃j , τ). (18) ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 4 552 V. I. TKACHENKO Analogously, by (11), we have, for t < τ, G̃(t, τ) = U1(t, τ)P1(τ)G̃(τ − 0, τ) + τ∫ −∞ G1(t, s)(Ã(s)−A1(s))G̃(s, τ)ds+ + ∑ τ>τ̃j G1(t, τ̃j)(B̃j −Bj)G̃(τ̃j , τ). (19) Putting t = τ in (18), we get P1(τ)G̃(τ, τ) = +∞∫ τ G1(τ, s)(Ã(s)−A1(s))G̃(s, τ)ds+ ∑ τ≤τ̃j G1(τ, τ̃j)(B̃j −Bj)G̃(τ̃j , τ). Since G̃(τ, τ)− G̃(τ − 0, τ) = I, we have by (19), for t < τ, G̃(t, τ) = U1(t, τ) ( +∞∫ τ G1(τ, s)(Ã(s)−A1(s))G̃(s, τ)ds+ + ∑ τ≤τ̃j G1(τ, τ̃j)(B̃j −Bj)G̃(τ̃j , τ) ) − U1(t, τ)P1(τ)+ + τ∫ −∞ G1(t, s)(Ã(s)−A1(s))G̃(s, τ)ds+ ∑ τ>τ̃j G1(t, τ̃j)(B̃j −Bj)G̃(τ̃j , τ) = = G1(t, τ) + ∞∫ −∞ G1(t, s)(Ã(s)−A1(s))G̃(s, τ)ds+ ∑ j G1(t, τ̃j)(B̃j −Bj)G̃(τ̃j , τ). The case t ≥ τ is considered analogously. Lemma 3 is proved. By (17), we obtain the estimate ‖G̃(t, τ)−G1(t, τ)‖ ≤ δ0M2e −β2|t−τ |, t, τ ∈ R, (20) with some β2 ≤ β1 and M2 ≥ 1. Lemma 4. Let systems (3), (4) and (12), (13) satisfy assumptions of Lemma 2 with sufficiently small δ0 > 0. Then the corresponding Green functions of these systems satisfy the inequality ‖G̃(t, τ)−G(t, τ)‖ ≤ δ0M̃2e −β2|t−s|, (21) for all t and s such that |t− τj | > δ0, |s− τj | > δ0 for all j ∈ Z. ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 4 EXPONENTIAL DICHOTOMY AND EXISTENCE OF ALMOST PERIODIC SOLUTIONS . . . 553 Proof. We have ‖G(t, τ)− G̃(t, τ)‖ ≤ ‖G(t, τ)−G(α(t), α(τ))‖+ ‖G(α(t), α(τ))− G̃(t, τ)‖. Let t > s (the case t < s is considered analogously). Then ‖G(t, s)−G(α(t), α(s))‖ = ‖U(t, s)P (s)− U(α(t), α(s))P (α(s))‖ ≤ ≤ ‖U(t, s)P (s)− U(α(t), s)P (s)‖+ + ‖U(α(t), s)P (s)− U(α(t), α(s))P (α(s))‖ ≤ ≤ ‖U(t, s)P (s)− U(α(t), t)U(t, s)P (s)‖+ + ‖U(α(t), s)P (s)− U(α(t), s)U(s, α(s))P (α(s))‖ ≤ ≤ ‖I − U(α(t), t)‖‖U(t, s)P (s)‖+ + ‖U(α(t), s)P (s)‖‖I − U(s, α(s))‖ ≤ ≤ Me−γ(t−s)‖I − U(α(t), t)‖+Me−γ(α(t)−s)‖I − U(s, α(s)‖. Here, for definiteness s ≥ α(s), t ≤ α(t). If t ∈ (τj + δ0, τj+1 − δ0), then α(t) ∈ (τj , τj+1). Therefore, by continuity there exists a positive constant C1 independent of t such that ‖I − −U(α(t), t)‖ ≤ C1δ0. As a result, we obtain ‖G(t, s) − G(α(t), α(s))‖ ≤ δ0M3e −β|t−s| with some positive constant M3 independent of t, s ∈ R and δ0. Now, taking into account (20) we obtain (21). Lemma 4 is proved. Corollary 1. Assume that system (3), (4) satisfies conditions (H1) – (H3) and is exponentially dichotomous with constants β and M. Then for any ε > 0, t, s ∈ R, |t − τj | > ε, |s − τj | > ε, j ∈ Z, there exists a relatively dense set of ε-almost periods r such that ‖G(t+ r, s+ r)−G(t, s)‖ ≤ εC1 exp ( −β 2 |t− s| ) , (22) where C1 is a positive constant independent on ε. Proof. If u(t) = U(t, s)u0, u(s) = u0, is a solution of the impulsive equation (3), (4), then u1(t) = U(t+ r, s+ r)u0 is a solution of the equation du dt = A(t+ r)u, t 6= τj , (23) ∆u|t=τj+q = u(τj+q + 0)− u(τj+q) = Bj+qu(τj+q), j ∈ Z. (24) By Lemma 1, there exists a positive integer q such that τj+q ∈ (s + r, t + r) if τj ∈ (s, t). Now we apply Lemma 4. 4. Almost periodic solutions of linear inhomogeneous system. We prove existence of almost periodic solutions in a linear inhomogeneous system. ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 4 554 V. I. TKACHENKO Lemma 5. Let a linear homogeneous system satisfy assumptions (H1) – (H3) and be exponenti- ally dichotomous on the axis. If the function f(t) is W -almost periodic and the sequence {gj} is almost periodic, then the linear inhomogeneous system (6), (7) has unique solution, which is bounded on R and W -almost periodic. Proof. The unique solution, bounded on R, of the system (6), (7) is defined by formula (8). We show that it is W -almost periodic. Take an ε-almost period r for the right-hand side of the equation. Then u0(t+ r)− u0(t) = +∞∫ −∞ G(t+ r, s)f(s)ds+ ∑ j G(t+ r, τj)gj − +∞∫ −∞ G(t, s)f(s)ds− − ∑ j G(t, τj)gj = +∞∫ −∞ (G(t+ r, s+ r)−G(t, s))f(s+ h)ds+ + +∞∫ −∞ G(t, s)(f(s+ r)− f(s))ds+ ∑ j (G(t+ r, τj+q)−G(t, τj))gj+q+ + ∑ j G(t, τj)(gj+q − gj). We estimate the first integral, ∞∫ −∞ ‖(G(t+ r, s+ r)−G(t, s))f(s+ r)‖ds≤ ≤ ∑ k∈Z τk+1−ε∫ τk+ε ‖(G(t+ r, s+ r)−G(t, s))f(s+ r)‖ds+ + ∑ k∈Z τk+ε∫ τk−ε ‖(G(t+ r, s+ r)−G(t, s))f(s+ r)‖ds ≤ ≤ ∞∫ −∞ εC1e −β 2 |t−s|‖f(s)‖ds+ ∑ k∈Z τk+ε∫ τk−ε ‖G(t+ r, s+ r)f(s+ r)‖ds+ + ∑ k∈Z τk+ε∫ τk−ε ‖G(t, s)f(s+ r)‖ds. By Lemma 1, |τj+q − τj − r| < ε, therefore τj + r + ε > τj+q (we assume that r > 0 for definiteness). The difference G(t, τj) − G(t + r, τj+q) is estimated as follows. Let t − τj ≥ ε. ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 4 EXPONENTIAL DICHOTOMY AND EXISTENCE OF ALMOST PERIODIC SOLUTIONS . . . 555 Then ‖G(t, τj)−G(t+ r, τj+q)‖ = ‖U(t, τj)(I − P (τj))− U(t+ r, τj+q)(I − P (τj+q))‖ ≤ ≤ ‖U(t, τj)(I − P (τj))− U(t, τj + ε)(I − P (τj + ε))‖+ + ‖U(t, τj + ε)(I − P (τj + ε))− U(t+ r, τj + ε+ r)(I − P (τj + ε+ r))‖+ + ‖U(t+ r, τj + ε+ r)(I − P (τj + ε+ r))− U(t+ r, τj+q)(I − P (τj+q))‖. (25) The first and the third differences are small because of continuity of the function U(t, s) at intervals between the points of impulses, ‖U(t, τj)(I − P (τj))− U(t, τj + ε)(I − P (τj + ε))‖ ≤ ≤ ‖U(t, τj + ε)(I − P (τj + ε))(U(τj + ε, τj)− I)‖ ≤ ≤ εC2e −β(t−τj−ε), ‖U(t+ r, τj + ε+ r)(I − P (τj + ε+ r))− U(t+ r, τj+q)(I − P (τj+q))‖ = = ‖U(t+ r, τj + ε+ r)(I − P (τj + ε+ r))(U(τj + ε+ r, τj+q)− I)‖ ≤ ≤ εC2e −γ(t−τj−ε). The second difference in (25) is small because of (22). 5. Proof of Theorem 1. Denote by M the space of all W -almost periodic functions with discontinuous at points of the same sequence {τj}. The norm in the space M is defined as ‖ϕ‖0 = supt∈R ‖ϕ(t)‖, ϕ ∈ M. We define an operator T on M as follows: if ϕ(t) ∈ M, then (Tϕ)(t) = ∞∫ −∞ G(t, s)f(s, ϕ(s))ds+ ∑ j G(t, τj)g(ϕ(τj)). First, we prove that T (Dh) ⊆ Dh for some h > 0 where Dh = {ϕ ∈ M, ‖ϕ‖0 ≤ h}. Indeed, if ‖ϕ‖0 ≤ h, then ‖Tϕ‖ ≤ ∞∫ −∞ ‖G(t, s)‖‖f(s, ϕ(s))‖ds+ ∑ j ‖G(t, τj)‖‖g(ϕ(τj))‖ ≤ ≤ ∞∫ −∞ Me−β|t−s|Hds+ ∑ j Me−β|t−τj |H ≤ ≤ 2MH ( 1 β + 1 1− e−βθ ) ≤ h. ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 4 556 V. I. TKACHENKO By Lemma 37 [2, p. 214], if ϕ(t) is an W -almost periodic function and infi τ 1 i = θ > 0, then {ϕ(τi)} is an almost periodic sequence. Using the method of finding common almost periods, it is possible to show that the sequence {gi(ϕ(τi))} is almost periodic. Let r be an ε-almost period of the function ϕ(t). Analogously to the proof of Lemma 5 we show that for t ∈ R, |t− τj | > ε, j ∈ Z, the following inequality holds: ‖(Tϕ)(t+ r)− (Tϕ)(t)‖ = ∥∥∥∥∥∥ +∞∫ −∞ G(t+ r, s)f(s)ds+ ∑ j G(t+ r, τj)gj − − +∞∫ −∞ G(t, s)f(s)ds− ∑ j G(t, τj)gj ∥∥∥∥∥∥ ≤ Γ(ε)ε, where Γ(ε) is some bounded function of ε. Hence, we proved that T (Dh) ⊆ Dh. If ϕ,ψ ∈ Dh, then ‖(Tϕ)(t)− (Tψ)(t)‖ ≤ ∞∫ −∞ ‖G(t, s)‖‖f(s, ϕ(s))− f(s, φ(s))‖ds+ + ∑ k ‖G(t, τk)‖‖gk(ϕ(τk))− gk(φ(τk))‖ ≤ ≤ 2MH ( 1 β + 1 1− e−βθ ) ‖ϕ− ψ‖0. For sufficiently small N > 0, the operator T is a contraction in the domain Dh, and so there exists a unique W -almost periodic solution of system (1), (2). 1. Halanay A., Wexler D. The qualitative theory of systems with impulse. — Moscow: Nauka, 1971. — 310 p. 2. Samoilenko A. M., Perestyuk N. A. Impulsive differential equations. — Singapore: World Sci., 1995. — 462 p. 3. Stamov G. T. Almost periodic solutions of impulsive differential equations // Lect. Notes Math. — 2012. — 2047. — 217 p. 4. Myslo Y. M., Tkachenko V. I. Almost periodic solutions of Mackey – Glass equations with pulse action // Nonlinear Oscillations. — 2012. — 15, № 4. — P. 537 – 546. 5. Samoilenko A. M., Trofimchuk S. I. Almost periodic impulse systems // Different. Equat. — 1993. — 29, № 5. — P. 684 – 691. 6. Akhmetov M. U., Perestyuk N. A. Periodic and almost periodic solutions of strongly nonlinear impulse systems // J. Appl. Math. and Mech. — 1992. — 56, № 6. — P. 829 – 837. 7. Henry D. Geometric theory of semilinear parabolic equations // Lect. Notes Math. — 1981. — 840. — 348 p. 8. Chow S.-N., Leiva H. Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces // J. Different. Equat. — 1995. — 120. — P. 429 – 477. 9. Pliss V. A., Sell G. R. Robustness of exponential dichotomies in infinite-dimensional dynamical systems // J. Dynam. Different. Equat. — 1999. — 11. — P. 471 – 513. 10. Kmit I., Recke L., Tkachenko V. I. Robustness of exponential dichotomies of boundary-value problems for general first-order hyperbolic systems // Ukr. Math. J. — 2013. — 65, № 2. — P. 236 – 251. ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 4 EXPONENTIAL DICHOTOMY AND EXISTENCE OF ALMOST PERIODIC SOLUTIONS . . . 557 11. Tkachenko V. I. On multi-frequency systems with impulses // Neliniini Kolyvannya. — 1998. — № 1. — P. 107 – 116. 12. Tkachenko V. I. On the exponential dichotomy of pulse evolution systems // Ukr. Math. J. — 1994. — 46, № 4. — P. 441 – 448. 13. Barreira L., Valls C. Robustness for impulsive equations // Nonlinear Anal. — 2010. — 72. — P. 2542 – 2563. 14. Naulin R., Pinto M. Splitting of linear systems with impulses // Rocky Mountain J. Math. — 1999. — 29, № 3. — P. 1067 – 1084. Received 20.03.14 ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 4