Entire bivariate functions of unbounded index in each direction
We investigate a class of entire functions f(z₁, z₂) with property ∀b= (b₁, b₂) ∈ C² \ {0} ∀ z⁰₁, z⁰₂ ∈ C, the function f(z⁰₁ + tb₁, z⁰₂ + tb₂), as a function of one variable t ∈ C, has a bounded index but the function f(z₁, z₂) has an unbounded index in every direction b. In particular, we prove th...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | Bandura, A.I., Skaskiv, O.B. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Schriftenreihe: | Нелінійні коливання |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/177337 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Entire bivariate functions of unbounded index in each direction / A.I. Bandura, O.B. Skaskiv // Нелінійні коливання. — 2018. — Т. 21, № 4. — С. 435-443 — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Entire bivariate functions of unbounded index in each direction
von: A. Bandura, et al.
Veröffentlicht: (2018) -
Growth of entire functions of bounded L -index in direction
von: A. I. Bandura, et al.
Veröffentlicht: (2017) -
Directional logarithmic derivative and the distribution of zeros of an entire function of bounded L-index in the direction
von: A. I. Bandura, et al.
Veröffentlicht: (2017) -
Boundedness of the L-index in the direction of the composition of slice entire functions and slice holomorphic functions in the unit ball
von: A. Bandura, et al.
Veröffentlicht: (2024) -
Boundedness of L-index for the composition of entire functions of several variables
von: A. I. Bandura, et al.
Veröffentlicht: (2018)