Entire bivariate functions of unbounded index in each direction
We investigate a class of entire functions f(z₁, z₂) with property ∀b= (b₁, b₂) ∈ C² \ {0} ∀ z⁰₁, z⁰₂ ∈ C, the function f(z⁰₁ + tb₁, z⁰₂ + tb₂), as a function of one variable t ∈ C, has a bounded index but the function f(z₁, z₂) has an unbounded index in every direction b. In particular, we prove th...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | Bandura, A.I., Skaskiv, O.B. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2018
|
| Series: | Нелінійні коливання |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/177337 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Entire bivariate functions of unbounded index in each direction / A.I. Bandura, O.B. Skaskiv // Нелінійні коливання. — 2018. — Т. 21, № 4. — С. 435-443 — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Entire bivariate functions of unbounded index in each direction
by: A. Bandura, et al.
Published: (2018) -
Growth of entire functions of bounded L -index in direction
by: A. I. Bandura, et al.
Published: (2017) -
Directional logarithmic derivative and the distribution of zeros of an entire function of bounded L-index in the direction
by: A. I. Bandura, et al.
Published: (2017) -
Boundedness of the L-index in the direction of the composition of slice entire functions and slice holomorphic functions in the unit ball
by: A. Bandura, et al.
Published: (2024) -
Boundedness of L-index for the composition of entire functions of several variables
by: A. I. Bandura, et al.
Published: (2018)