Analysis of testis - expressed Stellate genes promoter region in D. melanogaster

Here we present our analysis of a promoter-proximal region of Stellate genes expressed in D. melanogaster germline. We determined the minimal core promoter of Stellate genes using the series of deletion transgene constructs. We analyzed this region by gel shift assay and revealed three E-box site...

Full description

Saved in:
Bibliographic Details
Date:2008
Main Authors: Olenkina, O.M., Olenina, L.V., Lavrov, S.A., Klenov, M.S., Gvozdev, V.A.
Format: Article
Language:English
Published: Інститут молекулярної біології і генетики НАН України 2008
Series:Фактори експериментальної еволюції організмів
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/177900
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Analysis of testis - expressed Stellate genes promoter region in D. melanogaster / O.M. Olenkina, L.V. Olenina, S.A. Lavrov, M.S. Klenov, V.A. Gvozdev // Фактори експериментальної еволюції організмів: Зб. наук. пр. — 2008. — Т. 4. — С. 285-289. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-177900
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1779002025-02-23T18:22:55Z Analysis of testis - expressed Stellate genes promoter region in D. melanogaster Olenkina, O.M. Olenina, L.V. Lavrov, S.A. Klenov, M.S. Gvozdev, V.A. Механізми взаємодії та експресії генетичних систем Here we present our analysis of a promoter-proximal region of Stellate genes expressed in D. melanogaster germline. We determined the minimal core promoter of Stellate genes using the series of deletion transgene constructs. We analyzed this region by gel shift assay and revealed three E-box sites which bound to the protein factor from testis nuclear extract. Здесь мы представляем наш анализ промоторной области генов Stellate, экспрессирующихся в герминальных клетках D.melanogaster. Мы определили минимальный коровый промотор с помощью делеционных трансгенных конструкций. Мы проанализировали его с помощью гель-шифта и выявили три Е-бокса, связывающихся с белковым фактором из ядерного экстракта семенников. Тут ми представляємо наш аналіз промоторної ділянки генів Stellate, що експресується в гермінальних клітинах D.melanogaster. Ми визначили мінімальний коровий промотор за допомогою делецiонних трансгенних конструкцій. Ми проаналізували його за допомогою гель-шифту та виявили три дiлянки так званих Е- боксiв, що зв'язуються з білковим фактором з ядерного екстракту семенникiв. 2008 Article Analysis of testis - expressed Stellate genes promoter region in D. melanogaster / O.M. Olenkina, L.V. Olenina, S.A. Lavrov, M.S. Klenov, V.A. Gvozdev // Фактори експериментальної еволюції організмів: Зб. наук. пр. — 2008. — Т. 4. — С. 285-289. — Бібліогр.: 11 назв. — англ. 2219-3782 https://nasplib.isofts.kiev.ua/handle/123456789/177900 en Фактори експериментальної еволюції організмів application/pdf Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Механізми взаємодії та експресії генетичних систем
Механізми взаємодії та експресії генетичних систем
spellingShingle Механізми взаємодії та експресії генетичних систем
Механізми взаємодії та експресії генетичних систем
Olenkina, O.M.
Olenina, L.V.
Lavrov, S.A.
Klenov, M.S.
Gvozdev, V.A.
Analysis of testis - expressed Stellate genes promoter region in D. melanogaster
Фактори експериментальної еволюції організмів
description Here we present our analysis of a promoter-proximal region of Stellate genes expressed in D. melanogaster germline. We determined the minimal core promoter of Stellate genes using the series of deletion transgene constructs. We analyzed this region by gel shift assay and revealed three E-box sites which bound to the protein factor from testis nuclear extract.
format Article
author Olenkina, O.M.
Olenina, L.V.
Lavrov, S.A.
Klenov, M.S.
Gvozdev, V.A.
author_facet Olenkina, O.M.
Olenina, L.V.
Lavrov, S.A.
Klenov, M.S.
Gvozdev, V.A.
author_sort Olenkina, O.M.
title Analysis of testis - expressed Stellate genes promoter region in D. melanogaster
title_short Analysis of testis - expressed Stellate genes promoter region in D. melanogaster
title_full Analysis of testis - expressed Stellate genes promoter region in D. melanogaster
title_fullStr Analysis of testis - expressed Stellate genes promoter region in D. melanogaster
title_full_unstemmed Analysis of testis - expressed Stellate genes promoter region in D. melanogaster
title_sort analysis of testis - expressed stellate genes promoter region in d. melanogaster
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2008
topic_facet Механізми взаємодії та експресії генетичних систем
url https://nasplib.isofts.kiev.ua/handle/123456789/177900
citation_txt Analysis of testis - expressed Stellate genes promoter region in D. melanogaster / O.M. Olenkina, L.V. Olenina, S.A. Lavrov, M.S. Klenov, V.A. Gvozdev // Фактори експериментальної еволюції організмів: Зб. наук. пр. — 2008. — Т. 4. — С. 285-289. — Бібліогр.: 11 назв. — англ.
series Фактори експериментальної еволюції організмів
work_keys_str_mv AT olenkinaom analysisoftestisexpressedstellategenespromoterregionindmelanogaster
AT oleninalv analysisoftestisexpressedstellategenespromoterregionindmelanogaster
AT lavrovsa analysisoftestisexpressedstellategenespromoterregionindmelanogaster
AT klenovms analysisoftestisexpressedstellategenespromoterregionindmelanogaster
AT gvozdevva analysisoftestisexpressedstellategenespromoterregionindmelanogaster
first_indexed 2025-11-24T09:23:52Z
last_indexed 2025-11-24T09:23:52Z
_version_ 1849663141995085824
fulltext 285 10. Sohn J., Choi E., Kang H., Rhee J., Agaphonov M., Ter-Avanesyan M., Rhee S. A dominant selection system designed for copy-number-controlled gene integration in Hansenula polymorpha DL-1 // Appl. Microbiol. Biotechnol.- 1999.- vol. 51, P.800– 807. 11. Veenhuis M., Hoogkamer-Te Niet M.C., Middelhoven W.J. Biogenesis and metabolic significance of microbodies in urate-utilizing yeasts // Antonie Van Leeuwenhoek- 1985.-vol. 51, P.33-43. 12. Li J., Chen Z., Hou L., Fan H., Weng S., Xu C., Ren J., Li B., Chen W. High-level expression, purification, and characterization of non-tagged Aspergillus flavus urate oxidase in Escherichia coli // Protein Expr. Purif.- 2006.- vol. 49, P.55-59. 13. Leplatois P., Douarin B., Loison G. High-level production of a peroxisomal enzyme: Aspergillus flaws uricase accumulates intracellularly and is active in Saccharomyces cerevisiae // Gene– 1992.- vol. 122, P.139-145. Abstract Strains of Hansenula polymorpha overproducing own uricase (UOX) have been constructed. Uricase gene under the control of the strong H. polymorpha alcohol oxidase promoter was multicopy integrated to the recipient strain H. polymorpha С-105 (gcr1 catX). The recombinant producer characterized by a forty-fold increased UOX enzyme activity (up to 3.36 U ml-1 in cell-free extract) compared to the initial strain. Сконструированы штаммы Hansenula polymorpha с усиленной экспрессией собственной уриказы. Ген уриказы под контролем сильного промотора гена алкогольоксидазы H. polymorpha введён в геном реципиентного штамма H. polymorpha С-105 (gcr1 catX). Рекомбинантный штамм характеризировался сорокакратным увеличением активности уриказы (3.36 МЕ мл-1 в бесклеточных экстрактах) в сравнении с исходным штаммом. Сконструйовані штами Hansenula polymorpha з посиленою експресією власної урікази. Ген урікази під контролем сильного промотора алкогольоксидази H. рolymorpha було введено в геном реципієнтного штаму H. polymorpha С-105 (gcr1 catX). Рекомбінантний штам характеризувався підвищенням активності урікази в 40 разів (3.36 МЕ мл-1 в безклітинних екстрактах) у порівнянні з вихідним штамом. OLENKINA O.M.,OLENINA L. V., LAVROV S.A., KLENOV M. S., GVOZDEV V.A. Department of Animal Molecular Genetics, Institute of Molecular Genetics, Kurchatov sq., 2, Moscow, 123182, Russia; e-mail: olenkina@img.ras.ru ANALYSIS OF TESTIS - EXPRESSED STELLATE GENES PROMOTER REGION IN D. melanogaster The first described case of a natural RNA-mediated silencing found to be necessary for male fertility maintenance was discovered in Drosophila (Aravin et al., 2001). In wild- type testes, hyperexpression of tandemly repeated X-linked Stellate genes is prevented by homologous, bidirectionally transcribed Y-linked Suppressor of Stellate repeats (Su(Ste)), and deletion of Su(Ste) leads to abnormalities of spermatogenesis (Palumbo et al., 1994). In the Drosophila germline, selfish genetic elements, such as retrotransposons and repetitive sequences, are suppressed by rasiRNAs (Vagin et al., 2006). However, a little is known about classical transcription regulation of the Stellate genes. The expression of the Stellate genes is restricted to D. melanogaster testes. The transcription start site was determined in (Livak, 286 1990) by primer extension experiments. Sequence in -30 region upstream transcription start has shown no TATA-element similarity, so the Stellate gene promoter appears to be TATA- less but initiator-containing one. As we have shown earlier (Aravin et al., 2001) a 134 bp-long region containing Stellate initiator site is sufficient for high-level expression of transgene reporter LacZ in testes of cry1 males. This result provides a strong evidence for a presence of cis-regulatory sites within this region. In this article, we present our analysis of the promoter region of the Stellate genes. Materials and methods Reporter construction design. For PCR amplification, a plasmid template containing 6 full-length Stellate genes was used. PCR amplifications of Stellate regulatory sequences with primers, generating a duplex with 5’ overhangs containing sites for XbaI and BamHI, and ligation in pCaSpeR-β-gal vector opened with XbaI and BamHI, were performed as in Aravin et al., 2001. Drosophila strains, transformation, and genetic crosses. Flies were reared on standard medium at 25ºC. P-element-mediated germline transformation of Df(1)w67c23(2)y embryos was performed according to standard protocol (Rubin and Spradling, 1982). The number of insertions in genome was estimated by Southern blot. The strain with deletion of the bulk of Su(Ste) repeats on the Y chromosome was cry1Y, described in Palumbo et al., 1994. To produce males carrying the cry1Y chromosome, Df(1) w67c23(2)y females were crosses to X/cry1BsYy+ males. Testis nuclear extract preparation. It was prepared as in (Dignam et al., 1983) with minor modifications. Electromobility shift assay. The binding probes were terminally [32P]-labeled with T4 polynucleotide kinase. Testis nuclear extract 10-15 micrograms was incubated for 20 min at room temperature with 0.3-0.6 pmol of labeled oligonucleotide. All binding reaction were carried out in 20 mM HEPES pH7.6, 50-60 mM NaCl, 0.1 mM EDTA, 5 mM MgCl2, 1mM DTT, 5% glycerol, 20 ng/μl poly(dI-dC), 0.1 ng/μl heparin in total volume of 15 μl. DNA- protein complexes were resolved by 5% non-denaturing polyacrylamide gel electrophoresis in 0.75xTris-borate-EDTA buffer with 2.5% glycerol at 8ºC. Results and discussion Determination of 5’ border of proximal promoter region of Stellate genes. General approach taken to determine upstream borders of gene transcription-control regions involves creating a set of 5’-deleted reporter constructs. It was previously shown that lacZ reporters driven by 5’ Stellate fragments carrying the Ste225-lacZ and Ste131-lacZ constructs were sufficient to provide high-level expression of β-galactosidase in cry1Y males testes (Aravin et al., 2001). 134 bp 5’-fragment of Stellate heterochromatin gene contains 33 bp of 5’- transcribed region from ATG start codon, and promoter–proximal region lying 101 bp upstream of the start site. To determine whether the 134 bp fragment can be account as minimal promoter region of the Stellate genes, we constructed two additional 5’-deletion mutant constructs of Stellate promoter-proximal region Ste63-lacZ and Ste44-lacZ with lacZ- reporter gene, and established the transgenic fly lines by P-element-mediated germline transformation. Both mutant constructs also contained 33 bp of 5’-transcribed region of Stellate gene sequence downstream from the ATG start codon fused with lacZ gene and untranscribed 5’ upstream fragments of Stellate heterochromatin gene of 30 bp or 11 bp, respectively. Analysis of β-galactosidase activity in dissected testes from the cry1 males revealed that β-galactosidase expression of the Ste63-lacZ was significantly weaker than that of the Ste131-lacZ (fig.1). 287 Figure 1. Activity of β-galactosidase expressed in testes of D. melanogaster under control of the Stellate promoter sequences of different sizes. The Ste44-lacZ construct did not show β-galactosidase activity and did not differ markedly from control fly lines, which were used for P-element transformation. In our experiments, only flies bearing the Ste131-lacZ construct allowed high-level expression of the lacZ reporter in testes. As a result, we consider the fragment of 134 bp (-101 bp upstream and +33 bp downstream transcription start site) to be a minimal promoter region of the Stellate genes, which is sufficient for their correct testes-specific transcription. We suppose that the short 71 bp fragment (from -101 bp to -30 bp) shared by the Ste131-lacZ and the Ste63-lacZ constructs contains a cis-acting protein-binding control element, or a few elements, which regulate Stellate gene transcription in testes. Identification of cis-acting elements within Stellate promoter. To solve the question which cis-acting elements for testes-specific transcription are present in Stellate promoter, electromobility shift assay was performed. We used four 5’-radiolabeled oligonucleotides in 27-37 bp encompassing the minimal promoter of 134 bp and named Ste1, Ste2, Ste3 and Ste4 as probes. We observed three specific DNA-protein complexes formed with Ste1, Ste2, and Ste4 oligonucleotides, respectively, after their incubation with testis nuclear extract (fig.2). In all of these cases, 50-fold excess of unlabeled specific oligonucleotide was able to compete for binding, whereas nonspecific was not. The signal intensity of binding complexes decreased reproducibly in next array: Ste2 > Ste4 > Ste1. Within Ste2 we found palindrome hexanucleotide sequence CACGTG. Sequence CANNTG is well known as transcription control element named E-box (Atchley et al., 1997; Ledent and Vervoort, 2001). We aligned Ste1 and Ste4 oligonucleotides using Ste2 as a template and found that both of them contained degenerated E-box sequences: CATCTG and CAAGTG, respectively. Figure 2. Electromobility shift assay.1- without extract; 2, 3, 4- with testis nuclear extract; 3- in presence of 50-fold excess of unlabeled specific oligonucleotide; 4- in presence of 50-fold excess of unlabeled nonspecific oligonucleotide. 0 0,2 0,4 0,6 0,8 1 1Ste63-lacZ Ste131-lacZ Ste44-lacZ A lac Z 288 To verify if this testes-specific protein factor binds just E-box in the Ste2 sequence, we performed gel shift assay with mutated Ste2 oligonucleotide, Ste2mut, where E-box CACGTG sequence was replaced by GGCTAT. Using Ste2mut as radiolabeled probe with testis nuclear extract abolished the gel shift (data are not shown). These observations suggest that the gel shift complex of Ste2 oligonucleotide is determined by the E-box motif. We also have noted that all three complexes run shifted probes in gel nearly with the same mobility. To confirm that all three oligonucleotides Ste1, Ste2 and Ste4 bind the same factor, we designed cross-competition assay. We assumed that the unlabeled Ste2 oligonucleotide containing the perfect E-box would compete with all E-box-containing oligonucleotides for the E-box binding factor, whereas Ste2mut would not. Actually, we observed that the 70-fold molar excess of unlabeled Ste2 competed effectively for complex formation with all three radiolabeled oligonucleotides, however the same excess of unlabeled Ste2mut did not affect the binding (fig. 3). Therefore, we determined three cis-acting motifs within minimal Stellate promoter to be E-boxes and detected the single protein factor from testis nuclear extract interacting with them in vitro in our experiments. Figure 3. Cross-competition shift assay. Testis nuclear extract was incubated with oligonucleotide probes. 1- without competitors; 2- in presence of 70-fold excess of unlabeled Ste2 oligonucleotide; 3- in presence of 70-fold excess of unlabeled Ste2mut oligonucleotide. #-unspecific binding. Discussion. The most of genes are transcribed during the organism life cycle according to the environmental conditions and in certain cell types and organs. The changing set of transcription factors provides control of place, time, and level of transcription for every particular gene. The composition of transcription factors binding sites (cis-regulatory regions) near a gene is the major determinants of its expression. The binding sites comprise a small part of nucleotides within promoter region. This fraction ranges from 10-20% within well- studied regulatory regions (Wray et al., 2003). Some genes analyzed to date, expressing only during Drosophila spermatogenesis, have extremely short regulatory regions located near basal promoter (Santel, 2000; Blumer et al., 2002). Here we determined a fragment of 134 bp as a minimal promoter region of the Stellate genes, which is sufficient for their correct testes- specific transcription. We identified three cis-regulatory sites within this minimal Stellate promoter in vitro. These cis-regulatory sites are known as E-boxes. The perfect E-box CACGTG is located from -47 bp to -42 bp upstream transcription start site of the Stellate gene. It resides within the promoter fragment of 71 bp which has been shown above to be responsible for the high-level expression of the reporter gene. E-box regulatory sites have been identified in a lot of promoter and enhancer elements. The E-box motif is known as cognate recognition sequence for basic helix-loop-helix (bHLH) superfamily of transcriptional regulatory proteins that are found in organisms ranging from yeast to humans. 289 According to our data, we can expect that the protein which binds to the E-boxes in our experiments also belongs to the bHLH superfamily. Conclusions We determined fragment of 134 bp (-101 bp upstream and +33 bp downstream transcription start site) to be minimal promoter region of the testis-expressed Stellate genes in D. melanogaster. We also identified three cis-regulatory sites within it to be E-boxes and showed that all of them interacted with the same DNA-binding factor from testis nuclear extract. References 1. Aravin A.A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline//Curr.Biol.-2001.-v.11(13).- P.1017-1027. 2. Palumbo G et al. Genetic analysis of Stellate elements of Drosophila melanogaster//Genetics.-1994.-v.138.-P.1181-1197. 3. Vagin V.V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline//Science.-2000.-v.313(5785).-P.320-324. 4. Livak K. Detailed structure of the Drosophila melanogaster stellate genes and their transcripts//Genetics.-1990.-v. 124(2).-P.303-316. 5. Rubin G. and Spradling A. Genetic transformation of Drosophila with transposable element vectors//Science.-1982.-v.218.-P.348-353. 6. Dignam J.D. et al. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei//Nucleic Acid Res.-1983.-v.11.-P.1475-1489. 7. Atchley W. and Fitch W. A natural classification of the basic helix-loop-helix class of transcription factors//Proc. Natl. Acad. Sci. U S A.-1997.-v.94(10).-P.5172-5176. 8. Ledent V. and Vervoort M. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis//Genome Res.-2001.-v.11(5).-P.754-770. 9. Wray GA et al. The evolution of transcriptional regulation in eukaryotes//Mol. Biol. Evol.- 2003.-v 20(9).-P.1377-1419. 10. Santel A et al. The initiator element of the Drosophila β2tubulin gene core promoter contributes to gene expression in vivo but not required for male germline specific expression//Nucleic Acid Res.-2000.-v.28.-P.1439-1446. 11. Blumer N et al. A new translational repression element and unusual transcriptional control regulate expression of don juan during Drosophila spermatogenesis//Mech. Dev.-2002.- v.110.-P.97-112. Abstract Here we present our analysis of a promoter-proximal region of Stellate genes expressed in D. melanogaster germline. We determined the minimal core promoter of Stellate genes using the series of deletion transgene constructs. We analyzed this region by gel shift assay and revealed three E-box sites which bound to the protein factor from testis nuclear extract. Здесь мы представляем наш анализ промоторной области генов Stellate, экспрессирующихся в герминальных клетках D.melanogaster. Мы определили минимальный коровый промотор с помощью делеционных трансгенных конструкций. Мы проанализировали его с помощью гель-шифта и выявили три Е-бокса, связывающихся с белковым фактором из ядерного экстракта семенников. Тут ми представляємо наш аналіз промоторної ділянки генів Stellate, що експресується в гермінальних клітинах D.melanogaster. Ми визначили мінімальний коровий промотор за допомогою делецiонних трансгенних конструкцій. Ми проаналізували його за допомогою гель-шифту та виявили три дiлянки так званих Е- боксiв, що зв'язуються з білковим фактором з ядерного екстракту семенникiв.