Quantum mathematics: backgrounds and some applications to nonlinear dynamical systems
Backgrounds of a new mathematical physics discipline ’Quantum Mathematics’ are discussed and analyzed from both historical and analytical points of view. The magic properties of the second quantization method, invented by V. Fock in 1934, are demonstrated, and an impressive application to the nonl...
Gespeichert in:
| Datum: | 2008 |
|---|---|
| Hauptverfasser: | Bogolubov, N.N., Golenia, J., Prykarpatsky, A.K., Taneri, U. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2008
|
| Schriftenreihe: | Нелінійні коливання |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/178153 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Quantum mathematics: backgrounds and some applications to nonlinear dynamical systems / N.N. Bogolubov, J. Golenia, A.K. Prykarpatsky, U. Taneri // Нелінійні коливання. — 2008. — Т. 11, № 1. — С. 7-20. — Бібліогр.: 31 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Quantum mathematics: backgrounds and some applications to nonlinear dynamical systems
von: Bogolubov, N.N., et al.
Veröffentlicht: (2008) -
Generalized de Rham – Hodge complexes, the related characteristic Chern classes and some applications to integrable multidimensional differential systems on Riemannian manifolds
von: Bogolubov, N.N., et al.
Veröffentlicht: (2007) -
The Lagrangian and Hamiltonian analysis of some relativistic electrodynamics models and their quantization
von: Bogolubov (Jr.), N.N., et al.
Veröffentlicht: (2009) -
On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability
von: Golenia, J., et al.
Veröffentlicht: (2010) -
The Reduction Method in the Theory of Lie-Algebraically Integrable Oscillatory Hamiltonian Systems
von: Prykarpatsky, A.K., et al.
Veröffentlicht: (2003)