Second order nonlinear differential equations with an infinite set of periodic solutions
For the differential equation u′′ = f(t, u, u′), where the function f : R × R² → R is periodic in the first argument and f(t, x, 0) ≡ 0, sufficient conditions for the existence of a continuum of nonconstant periodic solutions are found.
Gespeichert in:
| Datum: | 2008 |
|---|---|
| 1. Verfasser: | Kiguradze, I.T. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2008
|
| Schriftenreihe: | Нелінійні коливання |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/178191 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Second order nonlinear differential equations with an infinite set of periodic solutions / I.T. Kiguradze // Нелінійні коливання. — 2008. — Т. 11, № 4. — С. 495-500. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Second order nonlinear differential equations with an infinite set of periodic solutions
von: Kiguradze, I.T.
Veröffentlicht: (2008) -
sFinding of periodic solutions of the ordinary nonlinear second order differential equation with the delay
von: Yu. Ye. Bokhonov
Veröffentlicht: (2016) -
On the asymptotic of solutions of second-order differential equations with rapidly varying nonlinearities
von: V. M. Evtukhov, et al.
Veröffentlicht: (2019) -
Asymptotic behavior of solutions of essentially nonlinear second order differential equations
von: E. S. Vladova
Veröffentlicht: (2016) -
On the asymptotics of solutions of the second-order differential equations with rapidly varying nonlinearities
von: V. M. Yevtukhov, et al.
Veröffentlicht: (2021)