On the structure of Leibniz algebras whose subalgebras are ideals or core-free
An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]]−[b, [a, c]] for all a, b, c ∊ L. Leibniz algebras are generalizations of Lie algebras. A subalgebra S of a Leibniz algebra L is called...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2020 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2020
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/188514 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On the structure of Leibniz algebras whose subalgebras are ideals or core-free / V.A. Chupordia, L.A. Kurdachenko, N.N. Semko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 180–194. — Бібліогр.: 12 назв. — англ. |