On the structure of Leibniz algebras whose subalgebras are ideals or core-free

An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]]−[b, [a, c]] for all a, b, c ∊ L. Leibniz algebras are generalizations of Lie algebras. A subalgebra S of a Leibniz algebra L is called...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2020
Main Authors: Chupordia, V.A., Kurdachenko, L.A., Semko, N.N.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2020
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188514
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the structure of Leibniz algebras whose subalgebras are ideals or core-free / V.A. Chupordia, L.A. Kurdachenko, N.N. Semko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 180–194. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine