On the structure of Leibniz algebras whose subalgebras are ideals or core-free
An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]]−[b, [a, c]] for all a, b, c ∊ L. Leibniz algebras are generalizations of Lie algebras. A subalgebra S of a Leibniz algebra L is called...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2020 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2020
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/188514 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On the structure of Leibniz algebras whose subalgebras are ideals or core-free / V.A. Chupordia, L.A. Kurdachenko, N.N. Semko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 180–194. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188514 |
|---|---|
| record_format |
dspace |
| spelling |
Chupordia, V.A. Kurdachenko, L.A. Semko, N.N. 2023-03-03T19:36:31Z 2023-03-03T19:36:31Z 2020 On the structure of Leibniz algebras whose subalgebras are ideals or core-free / V.A. Chupordia, L.A. Kurdachenko, N.N. Semko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 180–194. — Бібліогр.: 12 назв. — англ. 1726-3255 DOI:10.12958/adm1533 2010 MSC: 17A32, 17A60, 17A99 https://nasplib.isofts.kiev.ua/handle/123456789/188514 An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]]−[b, [a, c]] for all a, b, c ∊ L. Leibniz algebras are generalizations of Lie algebras. A subalgebra S of a Leibniz algebra L is called a core-free, if S does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On the structure of Leibniz algebras whose subalgebras are ideals or core-free Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On the structure of Leibniz algebras whose subalgebras are ideals or core-free |
| spellingShingle |
On the structure of Leibniz algebras whose subalgebras are ideals or core-free Chupordia, V.A. Kurdachenko, L.A. Semko, N.N. |
| title_short |
On the structure of Leibniz algebras whose subalgebras are ideals or core-free |
| title_full |
On the structure of Leibniz algebras whose subalgebras are ideals or core-free |
| title_fullStr |
On the structure of Leibniz algebras whose subalgebras are ideals or core-free |
| title_full_unstemmed |
On the structure of Leibniz algebras whose subalgebras are ideals or core-free |
| title_sort |
on the structure of leibniz algebras whose subalgebras are ideals or core-free |
| author |
Chupordia, V.A. Kurdachenko, L.A. Semko, N.N. |
| author_facet |
Chupordia, V.A. Kurdachenko, L.A. Semko, N.N. |
| publishDate |
2020 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]]−[b, [a, c]] for all a, b, c ∊ L. Leibniz algebras are generalizations of Lie algebras. A subalgebra S of a Leibniz algebra L is called a core-free, if S does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188514 |
| citation_txt |
On the structure of Leibniz algebras whose subalgebras are ideals or core-free / V.A. Chupordia, L.A. Kurdachenko, N.N. Semko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 180–194. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT chupordiava onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree AT kurdachenkola onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree AT semkonn onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree |
| first_indexed |
2025-12-07T15:27:27Z |
| last_indexed |
2025-12-07T15:27:27Z |
| _version_ |
1850863777231142912 |