On the structure of Leibniz algebras whose subalgebras are ideals or core-free

An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]]−[b, [a, c]] for all a, b, c ∊ L. Leibniz algebras are generalizations of Lie algebras. A subalgebra S of a Leibniz algebra L is called...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2020
Main Authors: Chupordia, V.A., Kurdachenko, L.A., Semko, N.N.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2020
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188514
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the structure of Leibniz algebras whose subalgebras are ideals or core-free / V.A. Chupordia, L.A. Kurdachenko, N.N. Semko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 180–194. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188514
record_format dspace
spelling Chupordia, V.A.
Kurdachenko, L.A.
Semko, N.N.
2023-03-03T19:36:31Z
2023-03-03T19:36:31Z
2020
On the structure of Leibniz algebras whose subalgebras are ideals or core-free / V.A. Chupordia, L.A. Kurdachenko, N.N. Semko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 180–194. — Бібліогр.: 12 назв. — англ.
1726-3255
DOI:10.12958/adm1533
2010 MSC: 17A32, 17A60, 17A99
https://nasplib.isofts.kiev.ua/handle/123456789/188514
An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]]−[b, [a, c]] for all a, b, c ∊ L. Leibniz algebras are generalizations of Lie algebras. A subalgebra S of a Leibniz algebra L is called a core-free, if S does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On the structure of Leibniz algebras whose subalgebras are ideals or core-free
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the structure of Leibniz algebras whose subalgebras are ideals or core-free
spellingShingle On the structure of Leibniz algebras whose subalgebras are ideals or core-free
Chupordia, V.A.
Kurdachenko, L.A.
Semko, N.N.
title_short On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_full On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_fullStr On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_full_unstemmed On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_sort on the structure of leibniz algebras whose subalgebras are ideals or core-free
author Chupordia, V.A.
Kurdachenko, L.A.
Semko, N.N.
author_facet Chupordia, V.A.
Kurdachenko, L.A.
Semko, N.N.
publishDate 2020
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]]−[b, [a, c]] for all a, b, c ∊ L. Leibniz algebras are generalizations of Lie algebras. A subalgebra S of a Leibniz algebra L is called a core-free, if S does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188514
citation_txt On the structure of Leibniz algebras whose subalgebras are ideals or core-free / V.A. Chupordia, L.A. Kurdachenko, N.N. Semko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 180–194. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT chupordiava onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree
AT kurdachenkola onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree
AT semkonn onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree
first_indexed 2025-12-07T15:27:27Z
last_indexed 2025-12-07T15:27:27Z
_version_ 1850863777231142912